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ABSTRACT

In “real life” decision-making situations, inevitably, there are numerous unmodelled components, not 
incorporated into the underlying mathematical programming models, that hold substantial influence 
on the overall acceptability of the solutions calculated. Under such circumstances, it is frequently 
beneficial to produce a set of dissimilar–yet “good”–alternatives that contribute very different 
perspectives to the original problems. The approach for creating maximally different solutions is 
known as modelling-to-generate alternatives (MGA). Recently, a data structure that permits MGA 
using any population-based solution procedure has been formulated that can efficiently construct 
sets of maximally different solution alternatives. This new approach permits the production of an 
overall best solution together with n locally optimal, maximally different alternatives in a single 
computational run. The efficacy of this novel computational approach is tested on four benchmark 
optimization problems.
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INTROdUCTION

Multifarious real-world decision-making environments are frequently confounded by ambiguous 
and incompatible structural specifications that can prove difficult to incorporate into mathematical 
decision models (Belarbi et al., 2017; Brugnach et al., 2007; Janssen et al., 2010; Matallah et al., 2017; 
Matthies et al., 2007; Mowrer, 2000; Walker et al., 2003). While “optimal” solutions can normally 
be calculated for the mathematical formulations, these answers may not produce the best outcomes 
in the original real system (Acharjya & Anitha, 2017; Brugnach et al., 2007; Fahad et al., 2017; 
Janssen et al., 2010; Loughlin et al., 2001). To improve decision-making under such circumstances, 
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it is often preferable to create a limited number of dissimilar options that contribute very different 
perspectives (Matthies et al., 2007; Puri et al., 2020; Yeomans & Gunalay, 2011). Preferably these 
alternatives should all possess good (i.e. near-optimal) objective measures with respect to their 
modelled objective(s), but be maximally different from each other in terms of the system structures 
characterized by their decision variables. Several approaches collectively referred to as modelling-
to-generate-alternatives (MGA) have been developed in response to this multi-solution creation 
requirement (Brill et al., 1982; Loughlin et al., 2001; Yeomans & Gunalay, 2011).

The primary impetus behind modelling-to-generate-alternatives (MGA) is to create a manageably 
small set of alternatives that are good with respect to all measured objective(s) yet are as fundamentally 
different as possible from each other within the prescribed decision space. By adopting a maximally different 
approach, the resultant alternative solution set is likely to provide very different perspectives with respect 
to any unmodelled issues, while simultaneously providing different choices that all perform somewhat 
similarly with respect to the modelled objectives (Walker et al., 2003). Decision-makers must conduct 
subsequent assessments of the alternatives to ascertain which specific option(s) most closely satisfies their 
underlying circumstances (Arrais-Castro et al., 2015). Consequently, MGA approaches are necessarily 
classified as decision support processes rather than as the explicit solution determination methods generally 
assumed for optimization (see Benatia et al., 2016; Sharma & Virmani, 2017; Strand et al., 2017).

The earliest MGA procedures employed a relatively straightforward approach in which each 
alternative was incrementally formulated by re-running the solution generation algorithm whenever a 
new option had to be produced (Baugh et al., 1997; Brill et al., 1982; Loughlin et al., 2001; Yeomans & 
Gunalay, 2011; Zechman & Ranjithan, 2004). These iterative procedures mimicked the seminal Hop-
Skip-Jump (HSJ) MGA approach of Brill et al. (1982) in which, once an initial problem formulation 
has been optimized, all supplementary alternatives are produced one-by-one. Consequently, these 
iterative procedures all require n+1 runnings of their respective algorithms to optimize the initial 
problem followed by the creation of n alternatives (Imanirad & Yeomans, 2013; Imanirad et al., 2012a; 
Yeomans & Gunalay, 2011). These MGA approaches were subsequently extended to generate sets of 
maximally different solution alternatives in Yeomans (2018a, 2018b, 2018c), Imanirad and Yeomans 
(2013), and Imanirad et al. (2012b, 2013a, 2013b, 2013c).

Recently, Gunalay & Yeomans (2019) and Yeomans (2018d, 2019a, 2019b) introduced a data 
structure that permits both optimization and MGA using any population-based solution procedure. 
Specifically, this new data-structure-based approach to MGA enables the simultaneous generation of 
the overall best solution together with an additional set of m-1 locally optimal, maximally different 
alternatives in a single computational run. Namely, to generate the additional m-1 maximally different 
solution alternatives, the MGA algorithm would need to run exactly the same number of times that 
an optimization procedure would need to be run for function optimization purposes alone (i.e. once) 
irrespective of the value of m (Yeomans 2017a, 2017b). Consequently, this simultaneous procedure 
could be considered extremely computationally efficient for MGA purposes.

Numerous metaheuristic approaches have been developed for use in a variety of decision-making 
environments (for some recent examples, see: Gergin et al. 2019; Jain & Yada 2021; Murali et al. 
2022; Vasant et al. 2020). For calculation and optimization purposes, Yang (2009, 2010) created three 
population-based metaheuristics: the Firefly Algorithm (FA), the Bat Algorithm (BA), and the Cuckoo 
Algorithm (CA). These three nature-inspired procedures have been shown to be more computationally 
efficient than the more commonly-used enhanced particle swarm, genetic algorithm, and simulated 
annealing metaheuristic procedures (Cagnina et al., 2008; Gandomi et al., 2011; Yang & Yeomans 
2014) and have been applied to an extremely diverse spectrum of problem settings (Acharjee & 
Chaudhuri 2022; Aggrawal & Anuja 2022; Bangyal et al. 2021; Bharathi 2022; Chandrasekaran & 
Simon 2014; Garg & Kumar 2021; Gopu & Venkataraman 2021; Pandey & Bannerjee 2021; Rahman 
et al. 2019; Rautry et al. 2019; Wang & Ji 2021).

In this paper, for the first time, the efficacy of employing the novel population-based MGA 
data structure approach in conjunction with the FA, BA, and CA is computationally examined using 
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the highly-nonlinear, well-known benchmark optimization problems: (i) the bivariate Michalewicz 
function (Cagnina et al., 2008), (ii) the “spring design” problem (Aragon et al., 2010), (iii) a 100-peak 
multimodal optimization problem (Loughlin et al., 2001), and a constrained optimization problem 
(Aragon et al. 2010)..

MOdeLLING TO GeNeRATe ALTeRNATIVeS

Optimization techniques have traditionally focused almost exclusively on determining a unique 
optimal solution to problem formulations with single-objectives or, equivalently, constructing a 
set of noninferior solutions to problems possessing multiple-objectives (Brill et al., 1982; Janssen 
et al., 2010; Walker et al., 2003). While these mathematical programming methods may solve the 
modelled problems strictly as formulated, whether the results truly provide the “best” answer(s) in 
their corresponding “real world” implementation is far less obvious (Brill et al., 1982; Brugnach et 
al., 2007; Janssen et al., 2010; Loughlin et al., 2001). The majority of “real” decision environments 
generally possess several system components that are not incorporated into the underlying modelling 
during the problem formulation stage (Brugnach et al., 2007; Walker et al., 2003). Inevitably, 
numerous subjective aspects are neither quantified nor modelled in the mathematical representation. 
Such subjective omissions generally occur when final decisions must be based not only on modelled 
objectives, but also on less tangible socio- economic and political stakeholder viewpoints (Yeomans 
& Gunalay, 2011). Numerous illustrations of these “real world” modelling decision biases and 
incongruencies can be found in Baugh et al. (1997), Brill et al. (1982), Loughlin et al. (2001) and 
Zechman and Ranjithan (2004).

When unmodelled components or unquantified objectives are known or suspected to exist, 
alternate solution approaches become requisite. These methods must not only explore the solution 
space for noninferior solutions, but also must examine the feasible region for demonstrably inferior 
solutions to the problem as modelled. To explicitly reiterate this requirement, any search for good 
alternatives to “real world” problems possessing unmodelled objectives must necessarily explore both 
the problem’s non-inferior solution set and also its corresponding inferior region.

To illustrate a solution search process for a single-objective maximization problem with 
unmodelled objectives, assume that the mathematically optimal objective value is Z1* for the solution 
X*. Further assume that a second, unquantifiable, socio-political, maximization objective Z2 also 
exists. Let the (unknown) two-objective, noninferior solution, Xc, correspond to a best compromise 
solution if both objectives had been known and considered simultaneously. While Xc represents a 
best solution to the real problem, it would be considered inferior to X* in the mathematical model 
because Z1c £ Z1* by definition. Thus, when unquantified elements are brought into a decision-
making process, mathematically inferior decisions to the modelled system could, in fact, become 
optimal for the underlying real problem. Necessarily, if unquantified components and unmodelled 
objectives exist, alternative solution procedures must not only search the decision space of the modelled 
problem for noninferior solutions, but concurrently explore the decision region for patently inferior 
solutions.

Consequently, under such circumstances, the solution process requires the creation of a set of 
options that are quantifiably good with respect to all modelled objectives yet remain as-different-as-
possible from each other within the feasible region. By achieving this maximal difference condition, 
the resultant set of alternatives contributes diverse perspectives that perform similarly with respect to 
all modelled objective(s) yet potentially dissimilarly with respect to any unmodelled components. By 
constructing these as-different-as-possible alternatives, the decision makers can consider desirable 
aspects within the options that may address the various unmodelled objectives to varying degrees 
of stakeholder acceptability.

It becomes necessary to formalize the mathematical definition of maximal difference in order 
to characterize the solution process (Loughlin et al., 2001; Yeomans & Gunalay, 2011). Let the 
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optimal solution to a mathematical model be X* with corresponding objective calculated as Z* = 
F(X*). The ensuing maximal difference model can be evaluated to produce the alternative, X, that 
is maximally different to X*:

Maximize D (X, X*) = 
iå | Xi - Xi* | (1)

Subject to: XÎD (2)
| F(X) - Z*| £ T (3)

where D  is a difference function (an absolute difference function in this instance), D is the feasible 
domain of the original mathematical model, and T represents some permissible user-defined target 
deviation relative to the original optimal value Z*. In effect, T determines what proportion of the 
inferior region will be explored in the search for acceptable alternatives. The notion of difference can 
be extended into a measure between any set of alternatives by replacing X* in the maximal difference 
model’s objective and evaluating the sum (or another desired function) of the pairwise differences 
between each pair of alternatives – subject to a condition that each alternative falls within the specified 
tolerance and is feasible. The strengths and drawbacks of numerous alternative difference functions 
have been considered extensively by Yeomans (2019c, 2019d, 2019e, 2019f, 2019g, 2020a).

The new population-based MGA data structure approach described in the next section generates 
a pre-determined number of maximally different alternatives by exploiting the population structure 
within metaheuristic algorithms. The evolution that occurs throughout the population enables the 
procedure to simultaneously investigate sets of diverse local optima throughout the entire solution 
space. The survival of each solution in the population depends upon how it performs both with respect 
to the original model’s objective(s) as well as by the distance each alternative is from all of the other 
generated alternatives in the feasible region.

POPULATION-BASed SIMULTANeOUS MGA COMPUTATIONAL ALGORITHM

This section provides a synopsis of the state-of-the-art in population-based MGA research. The most 
logical initial MGA algorithmic approach to create each alternative iteratively increments the target, T, 
by some amount and then solves the resulting maximum difference model (Yeomans, 2018c, 2018d). 
Such a one-at-a-time method is directly analogous to the HSJ approach of Brill et al. (1982). In HSJ, 
once an initial optimization has been completed, additional alternatives are produced sequentially by 
incrementing the target constraint to force the supplementary construction of suboptimal solutions. 
This straightforward approach necessitates n subsequent executions of the principal optimization 
routine to produce the n alternatives (Imanirad & Yeomans, 2013; Imanirad et al., 2012a; Yeomans 
& Gunalay, 2011).

To improve upon the step-by-step requirement in HSJ, Imanirad et al. (2012a, 2012b, 2013b) used 
co-evolution to create a concurrent MGA solution technique. In concurrent co-evolution, the overall 
population of a metaheuristic is stratified into pre-specified subpopulations that permit the search 
procedure to evolve collectively into a number of maximally different solutions. Each alternative is 
represented by a specific subpopulation. Evolutionary survival within a subpopulation depends upon 
both solution quality with respect to the modelled objective(s) and by how far away each alternative 
(i.e. subpopulation) is from all of the other alternatives (i.e. the other sub-populations). Evolution 
into a local optimum in any one subpopulation is directly influenced by the set of existing solutions 
in every other subpopulation. It is this concurrent influence that forces each subpopulation to co-
evolve into maximally distant regions of the feasible region (Yeomans & Gunalay, 2011). Because 
co-evolution concurrently generates an entire set of maximally different alternatives from the single 
sub-divided population, this population-based procedure is much more computationally efficient 
than its earlier sequential HSJ counterpart (Imanirad & Yeomans, 2013; Imanirad et al., 2013b). 
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Although concurrent MGA procedures exploit the structure of population-based algorithms, the actual 
co-evolution, itself, only occurs within each stratified subpopulation. Unfortunately, this implies that 
any maximal differences measured between solutions in different subpopulations can only be based 
upon aggregated subpopulation values.

To counteract this aggregation shortcoming, Yeomans (2018d, 2019a, 2019b) and Gunalay 
& Yeomans (2019) created a novel data structure that could be used by any population-based 
metaheuristic for multicriteria MGA. In the ensuing MGA algorithm, each solution in the population 
represents exactly one potential set of alternatives and the maximal difference is calculated only 
within that particular solution. Consequently, by the evolutionary nature of population-based searches, 
the maximal difference will be simultaneously calculated over the specific alternatives within each 
specific solution – which circumvents any need for concurrent subpopulation aggregation measures.

Suppose that decision-makers wish to generate P different solution alternatives in which each 
solution possesses n decision variables. Assume that a population-based metaheuristic is to be 
used and that the population algorithm will contain K solutions, in total. To accomplish the MGA 
requirement, each solution in the population is designed to contain P maximally different alternatives. 
Assume that Yk, k = 1,…, K, corresponds to the kth solution, so that Yk provides one complete set of 
P different alternatives. If Xkp represents the pth alternative, p = 1,…, P, of solution k, k = 1,…, K, 
then Yk can be written as:

Yk = [Xk1, Xk2,…, XkP] . (4)

If Xkjq, q = 1, …, n is the qth variable in the jth alternative of solution k, then: 

Xkj = (Xkj1, Xkj2,…, Xkjn) . (5)

The entire population, Y, in vector form consists of K different sets of P alternatives expressed as:

Y’ = [Y1, Y2,…, YK] . (6)

Using this data structure, Yeomans (2018d, 2019a, 2019b) and Gunalay and Yeomans (2019) 
constructed the subsequent simultaneous MGA method that can be easily modified for solution via 
any population-based algorithm. The approach proceeds by creating its pre-specified number of 
maximally different alternatives, by adjusting the value of the bound T in the maximal difference 
model, and by solving the corresponding maximal difference problem. Due to the format of the data 
structure noted above, each and every solution within the population corresponds to exactly one set 
of P distinct alternatives. Based upon the evolutionary process within the population, the procedure 
collectively evolves each solution toward different local optima within the solution space. Solution 
survival is contingent upon both how the alternative performs with respect to modelled objective(s) 
and how far apart they are in the decision space from all other generated alternatives.

The steps in this simultaneous MGA algorithm are as follows (Gunalay & Yeomans, 2019; 
Yeomans, 2018d, 2019a, 2019b):

Preliminary Step. Determine X*, the best solution to the original problem formulation. P 
corresponds to the required number of maximally different alternatives to be generated within a 
prescribed target deviation from X*. Note that the value of P is fixed by the decision maker, a priori. 
Create P target values based on the calculated objective value F(X*). Without loss of generality, this 
preliminary step can be ignored. The algorithm could solve for X* in conjunction with the subsequent 
steps. If this were the case, the initial algorithmic stages would be devoted to the search for X*. 
This would render the remaining components within each solution as “computational overhead.” 
Consequently, the number of computational iterations would have to increase.
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Step 1. Generate the initial population of size K with each solution partitioned into P equally 
sized divisions. Each partition size represents the number of decision variables in the original problem 
formulation. Xkp corresponds to the pth alternative, p = 1, …, P in solution Yk, k = 1, …, K.

Step 2. In each of the K solutions, evaluate each Xkp, p = 1, …, P, using the modelled objective. 
Alternatives that satisfy both their target constraint and all the other problem constraints are deemed 
to be feasible, whereas all remaining alternatives are designated infeasible. Each individual solution in 
the population would only be designated feasible if every alternative contained within it was feasible.

Note: If the best-solution-found-so-far is always retained over each iteration, at least one feasible 
solution will always exist. At the very least, one feasible solution can always be constructed by using 
P repetitions of the solution X* found in the initialization step.

Step 3. Implement an appropriate elitism operator to rank order the best solutions within the 
population. The best solution will be the feasible solution containing the most distant set of alternatives 
within the feasible region (distance measures will be declared in Step 5).

Step 4. If the designated termination criterion has been met (e.g., maximum number of iterations, 
solution convergence, etc.), stop the algorithm. Otherwise, proceed to Step 5.

Step 5. For each solution Yk, k = 1, …, K, calculate the distance measure, D1
k, between all of the 

alternatives contained within it.
One example of an appropriate distance measure is calculated as:

D1
k = D1 (Xka,Xkb) = 

a toP=∑ 1 b toP=∑ 1 q n=∑ 1...
| Xkaq – Xkbq | . (7)

This measure represents the total absolute pairwise distance between every alternative contained 
within solution k. Alternative distance measures could be determined by some other appropriately 
defined function. Any measure could be appropriately modified to incorporate violation penalties 
corresponding to infeasibility within the solutions.

Step 6. Rank order all solutions based upon D1
k. The goal of maximal difference is to force 

the alternatives within each solution as far apart as possible. This step orders the specific solutions 
based upon those solutions which contain alternatives that are most distant from each other in the 
decision space.

Step 7. Implement the required evolutionary “change operations” to each solution in the population 
and return to Step 2.

FIReFLy ALGORITHM

Although this section provides a brief overview of the FA, more extensive descriptions can be found 
in Yang (2009, 2010) and Yang and Yeomans (2014). The FA is a population-based metaheuristic 
that possesses three ideals inspired by the natural world: (1) All fireflies within a population are 
considered unisex, implying that any one firefly could be attracted to any other firefly regardless 
of their sex; (2) Relative attractiveness between any two fireflies is directly proportional to their 
brightness, meaning that a less brightly flashing firefly will always move toward a brighter one. 
Furthermore, relative brightness and attractiveness will both decrease as the distance between them 
increases. If there is no brighter firefly visible within its vicinity, then that particular firefly moves 
about randomly; and (3) A firefly’s brightness is based upon the value of the objective function. 
Specifically, for any maximization problem, the brightness is considered to be directly proportional 
to the objective function value. Based upon these ideals, Yang (2010) used the based following 
pseudo-code to summarize the FA’s basic operational steps.
Objective Function F(X), X = (x

1
, x

2
,… x

d
)

Generate the initial population of n fireflies, X
i
, i = 1, 2,…, n

Light intensity I
i
 at X

i
 is determined by F(X

i
)
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Define the light absorption coefficient γ 
while (t < Max number of generations) or (Stop criterion)
 for i = 1: n, all n fireflies
      for j = 1: n, all n fireflies (inner loop)
           if (I

i
 < I

j
), Move firefly i towards j; end if

           Vary attractiveness with distance r via e- γr  
      end for j
 end for i
 Rank the fireflies and find the current global best solution G*  
end while 
 Postprocess the results

There are two important issues to resolve when implementing the FA: (i) the variation of light 
intensity and (ii) the formulation of attractiveness. For simplicity, it is assumed that any firefly’s 
attractiveness depends upon its brightness which, in turn, depends upon the calculated objective 
function value. For the basic situation, firefly brightness at location X is calculated as its objective value 
F(X). However, the attractiveness, β, between fireflies is relative and varies based upon the distance rij 
between firefly i and firefly j. Additionally, because the light intensity decreases with the distance from 
its source and the light can also be absorbed by the surrounding media, the attractiveness is allowed 
to vary based upon the degree of absorption. Consequently, firefly attractiveness is calculated as:

β = β0 exp(-γr2) (8)

where β0 represents attractiveness at distance r = 0, while γ represents the light absorption coefficient 
in a particular medium. If the distance rij between fireflies i and j located at Xi and Xj, respectively, 
is calculated using a Euclidean norm, then the movement of the firefly i that is attracted to the more 
attractive (i.e. brighter) firefly j is calculated as:

Xi = Xi + β0 exp(-γ(rij)
2)(Xi – Xj) + αεi . (9)

In this movement expression, the second term represents relative attraction and the third 
component introduces an element of randomness. Yang (2009, 2010) asserts that α is a randomization 
parameter generally selected within the [0,1] range and εi represents a vector of random numbers 
drawn from either the uniform (generally [-0.5,0.5]) or Gaussian distributions. This expression 
represents a random walk biased towards brighter fireflies, becoming a simple random walk when 
β0 = 0. The parameter γ embodies variation in attractiveness and controls the overall speed of 
convergence for the FA. In general, γ is fixed at a value between 0.1 to 10 (Gandomi et al., 2011; 
Yang, 2010). In an optimization problem containing a very large number of fireflies n >> k, where 
k is the number of local optima, the initial locations for the n fireflies ought to be distributed uniformly 
throughout the search space. As the FA proceeds, the fireflies tend to converge into all k local optima 
(Yang, 2009, 2010). Under such circumstances, the global optima can be easily determined by 
identifying the best solution(s) among all these optima. Yang (2010) demonstrated that the FA will 
approach the global optima whenever n → ¥  and the number of iterations t, is set so that t >>1. In 
practice, the FA has been found to converge extremely quickly (Gandomi et al., 2011; Yang, 2009, 
2010).

Two important asymptotic cases occur for γ → 0 and γ → ¥ . When γ → 0, the attractiveness 
remains as the constant β = β0, which is equivalent to light intensity that does not decrease. This 
implies that a firefly always remains visible from anywhere in the solution domain. Hence, a single 
(usually global) optima can easily be reached. If Xj is replaced by the current global best solution, 
G*, then the FA becomes a special instance of the accelerated particle swarm optimization (PSO) 
algorithm. The computational efficiency of this special case is equivalent to enhanced PSO. Conversely, 
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whenever γ → ¥ , relative attractiveness becomes zero with respect to the view between any firefly 
pair. This corresponds to the situation in which fireflies simply roam through an impenetrably thick 
region of fog. Furthermore, each firefly must roam in a completely random fashion because no other 
fireflies are ever visible and corresponds to a random search method. Because the FA generally 
operates between these asymptotic extremes, it becomes possible to adjust α and γ so that the FA 
outperforms both enhanced PSO algorithms and random searches (Gandomi et al., 2011).

What differentiates the FA from other population-based metaheuristics, is that it converges 
simultaneously into a specified number of local optima (including the global ones) in highly non-linear 
optimization problems (see, also: Arun et al., 2017; Dekhici et al., 2015, Yeomans 2020a, 2020b). As 
noted, within the two asymptotic extremes, the population in the FA can concurrently determine both 
global optima as well as local optima. With a judicious selection of parameter settings, the FA can 
simultaneously converge extremely quickly into both local and global optima (Gandomi et al., 2011; 
Yang, 2009, 2010; Yang & Yeomans 2014). Imanirad & Yeomans (2013) have illustrated how the FA’s 
abilities to find multiple local optima can be modified to produce n maximally different alternatives as 
required for MGA. Concurrent population-based procedures have been shown to possess significant 
computational efficiency for MGA purposes (Yeomans & Gunalay, 2011). Consequently, an additional 
advantage in using an FA for MGA is that, because the different fireflies will independently tend to 
aggregate more closely around each local optimum, the FA procedures prove far better than genetic 
algorithms and PSO for MGA (Gandomi et al., 2011; Yang, 2010).

BAT ALGORITHM

This section provides a concise synopsis of the population-based BA metaheuristic that is covered 
in significantly greater detail in Yang (2009, 2010) and Yeomans (2021). Each bat in the population 
corresponds to one potential solution to a problem and the initial population of fireflies is distributed 
randomly and uniformly throughout the decision space. The BA operates under the following three 
ideals: (i) All bats use echolocation to sense distance and can distinguish between food/prey and 
background barriers; (ii) Bats fly randomly with velocity vi at position xi with a fixed frequency fmin 
(or wavelength λ), varying wavelength λ (or frequency f) and loudness A0 to search for prey. They can 
automatically adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse 
emission r within the range [0,1] depending upon the proximity to their target; and, (iii) Although 
the loudness can vary in many ways, it can be assumed that loudness actually varies from a large 
(positive) A0 down to some minimum value Amin. The operational steps of the BA are summarized in 
the following pseudo-code (Yang 2010).
Objective Function F(X), X = (x

1
, x

2
,… x

d
)

Initialize population of n bats, X
i
, i = 1, 2,…, n and vi

Initialize pulse rates r
i
 and the loudness A

i
. 

Define the pulse frequency f
i
 at X

i
.

while (t < Max number of generations) or (Stop criterion)
Generate new solutions by adjusting frequency, and updating 
velocities and locations/solutions 
 if (rand > r

i
)

      Select a solution among the best solutions 
      Generate a local solution around the selected best 
solution 
 end if 
 Generate a new solution by flying randomly 
 if (rand < A

i
) & (F(X

i
) < F(X*))

      Accept the new solutions 
      Increase r

i
 and reduce A

i
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 end if 
Rank the bats and find the current best solution X*  
end while 
 Postprocess the results and generate any visualizations

In the BA, the virtual bats are simulated. Certain rules are adopted to define how their positions 
xi and velocities vi in the d-dimensional search space are updated. The solutions/positions xit and 
velocities vit at time step t are determined by:

fi = fmin + (fmax - fmin) β (10)
vit = vit-1 + (xiy – x*) fi (11)
xit = xit-1 + vit (12)

where β is a random vector with each element generated from a uniform distribution over the range 
[0,1]. The value x* is the current global best solution which is determined by comparing all the 
solutions among the n bats in the n-dimensional solution vector x. Initially each bat is assigned a 
random frequency drawn uniformly from the interval [fmin, fmax]. For the local search portion, once a 
solution is selected among the current best solutions, a new solution for each bat is generated locally 
using a random walk:

xnew = xold + εAt (13)

where ε is a random vector in the range [-1,1] and At is the average loudness of all the bats at this 
time step, t.

The loudness Ai and the rate of pulse emissions, ri, have to be updated accordingly as the iterations 
proceed. As the loudness usually decreases once the bat has found its prey while the rate of pulse 
emissions increases, the loudness can be chosen as any value of convenience. For simplicity, one 
can use A0 = 1 and Amin = 0, assuming that Amin = 0 implies that a bat has just found the prey and 
temporarily stops emitting any sound. Thus:

Ait+1 = α Ait, rit+1 = ri0 [1 – exp(γ t)] (14)

where α and γ are constants. The choice of parameters requires some experimenting, but in the simplest 
case α = γ. Initially, each bat should have different values for their loudness and emissions rate, and 
this can be achieved via randomization. The loudness and emissions rates will only be updated by 
the algorithm if the new solutions provide an improvement, which means that the bats are actively 
moving towards the optimal solution. The algorithm proceeds either until some convergence condition 
has been achieved or for a maximum number of iterations (Gandomi et al., 2011; Yang, 2009, 2010).

CUCKOO ALGORITHM

This section provides a very brief outline of the CA procedure that is covered in significantly greater 
detail in Yang (2009, 2010) and Yang and Deb (2010). The CA is a nature-inspired, population-based 
metaheuristic in which each cuckoo egg represents one possible solution. The CA operates under 
the following three idealized rules: (i) Each cuckoo lays a single egg at a time and deposits it in a 
randomly chosen nest; (ii) The best nests with highest quality of eggs (solutions) will carry over to the 
next generations; and, (iii) The number of available host nests is fixed, and a host bird can discover 
an alien egg with probability Pa within the range [0,1]. In the case of detection, the host bird can 
either throw the egg away or abandon the nest so as to build a completely new nest in a new location.
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For simplicity, this last assumption can be approximated by a fraction Pa of the n nests being 
replaced by new nests (with new random solutions provided at each new location). For a maximization 
problem, the quality or fitness of a solution is simply proportional to the objective function value. 
Alternative forms of fitness could also be defined in analogous fashion.

The operational steps of the BA can be summarized in the following pseudo-code (Yang 2010):
Objective Function F(X), X = (x

1
, x

2
,… x

d
)

Initialize population of n host nests, X
i
, i = 1, 2,…, n 

while (t < Max number of generations) or (Stop criterion)
 Randomly select a cuckoo (say i) and generate a new solution by 
Levy flights 
 Evaluate its quality/fitness, F

i

 Randomly choose a nest among n (say j) 
 if (F

i
 > F

j
)

      Replace j by the new solution
 end if 
 Abandon a fraction (P

a
) of worse nests and build new ones at new 

locations via Levy flights 
 Build new nests at new locations 
 Keep the best solutions (or nests with quality solutions)  
 Rank the solutions and find the current best solutions  
end while 
 Postprocess the results and generate any visualizations 
When generating new solutions X

i
(t+1) for cuckoo i, a Levy flight is 

performed:

Xi
(t+1) = Xi

(t) + α ⊕Levy(λ) (15)

where α >0 is a step size related to the scale of the problem. In most cases, α = O(1) can be employed 
and the product ⊕ implies entry-wise multiplications. Levy flights essentially provide a random walk, 
while their random steps are drawn from a Levy distribution for large steps:

Levy ~ u = t λ, 1< λ ≤ 3 (16)

which has an infinite variance with an infinite mean. Here, the consecutive jumps/steps of a cuckoo 
essentially form a random walk process which obeys a power-law step-length distribution with a 
heavy tail (see Yang, 2010).

COMPUTATIONAL TeSTING OF THe MGA ALGORITHM

As outlined earlier, “real world” decision-makers often prefer to be able to choose from a set of 
close-to-optimal alternatives that significantly differ from each other in terms of the system structures 
characterized by their decision variables. The effectiveness of the novel MGA data structure procedure 
introduced in the previous section to simultaneously produce maximally different alternatives will 
be evaluated against four frequently-tested, well-known benchmark problems. In each test, the target 
constraint is set so that all of the alternatives produced can fall within, at worst, 10% of the best 
objective value determined.

The first computational test uses the multimodal bivariate Michalewicz function problem taken 
from Yang and Deb (2010). The mathematical formulation for the tested instance of the bivariate 
Michalewicz function is:
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Minimize F(x, y) = - Sin(x)Sin2m x
2

p











 - Sin(y)Sin2m 2
2y

p











 (17)

0.0 £ x£  5.0 0.0 £ y£  5.0 m = 10 (18)

The highly non-linear feasible region of this problem contains a considerable number of peaks 
(local optima) separated by a proportionately large number of valleys. For the design parameters 
employed in this specific instance of the formulation, the best solution of F(x, y) =

-1.8013 occurs at the point (x, y) = (2.20319, 1.57049) (Yang & Deb, 2010). The MGA approach 
outlined in the previous section was run to produce five maximally different solutions shown in Table 
1. As can be observed, the best solutions determined by each algorithm, respectively, match the true 
optimal solution for the Michalewicz formulation. Furthermore, the remaining four alternatives created 
by each algorithm all composed of a similar range of solution instances.

The second application of the MGA procedure is illustrated using the spring design problem 
taken from Cagnina et al. (2008). The design of a tension and compression spring has frequently 
been employed as a benchmark problem for constrained engineering optimization problems (Aragon 
et al., 2010; Cagnina et al., 2008). The spring problem involves three design variables: (1) x

1
, the 

wire diameter; (2) x
2

, the coil diameter; and (3) x
3

, the length of the coil. The aim is to essentially 
minimize the weight subject to constraints on deflection, stress, surge frequency, and geometry. The 
mathematical formulation for this test problem can be summarized as:

Minimize F(X) = x x x
1
2
2 3
2+( )  (19)

Table 1. 
Five maximally different alternatives for the Michalewicz function generated by each algorithm

FIREFLY ALGORITHM F(x,y) x y

Optimal found in Preliminary Step -1.80 2.20 1.57

Alternative 1 -1.78 2.23 1.58

Alternative 2 -1.73 2.26 1.56

Alternative 3 -1.65 2.30 1.56

Alternative 4 -1.58 2.08 1.56

BAT ALGORITHM F(x,y) x y

Optimal found in Preliminary Step -1.80 2.20 1.57

Alternative 1 -1.76 2.16 1.55

Alternative 2 -1.72 2.26 1.59

Alternative 3 -1.63 2.31 1.56

Alternative 4 -1.62 2.31 1.58

CUCKOO ALGORITHM F(x,y) x y

Optimal found in Preliminary Step -1.80 2.20 1.57

Alternative 1 -1.76 2.15 1.56

Alternative 2 -1.65 2.10 1.56

Alternative 3 -1.63 2.31 1.56

Alternative 4 -1.58 2.08 1.56
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Subject to: g1(X) = 1 – 
x x

x
2
3
3

1
471785

 £  0  (20)

g2(X) = 
4

12566
2
2

1 2

1
3
2 1

4

x x x

x x x

−

−( )
+ 1

5108
1
2x

– 1 £ 0 (21)

g3(X) = 1 – 
140 45

1

2
2
3

. x

x x
£ 0 (22)

g4(X) = 
x x
1 2

1 5

+

.
– 1 £ 0 (23)

0.05 £ x
1
£ 2.0 0.25 £ x

2
£ 1.3 2.0 £ x

3
£ 15.0 (24)

The optimal solution for the specific design parameters employed within this formulation is 
F(X*) = 0.0127 with decision variable values of X* = (0.051690, 0.356750, 11.287126) (Cagnina et 
al., 2008). The MGA procedure was used to create the five maximally different solutions shown for 
each algorithm in Table 2. As with the Michalewicz problem, the best spring design solutions found 
for each algorithm are all identical to the actual optimal solution. As with the previous test, all four 
of the remaining alternatives are comprised of a very similar set of solution instances.

The third MGA solution creation application will be tested on the 100-peak multimodal 
optimization problem taken from Loughlin et al. (2001). The mathematical formulation for this 
multimodal test problem is:

Maximize F(x, y) = Sin(19πx) + x
1 7.

+ Sin(19πy) + y
1 7.

+ 2 (25)

0.0 £ x£  1.0 (26)
0.0 £ y£  1.0 (27)

The corresponding feasible region for this highly-nonlinear problem contains 100 peaks separated 
by valleys with the amplitudes of both the peaks and valleys increasing as the values of the decision 
variables increase from their lower bounds of (0,0) toward their upper limits at (1,1). For the design 
parameters employed in this specific problem formulation, the mathematically optimal solution of 
F(x, y) = 5.146 occurs at point (x, y) = (0.974, 0.974) (Loughlin et al. 2001). The MGA difference 
model was used to generate the 5 maximally different solutions shown in Table 3. Similar to the 
two previous tests, the best solutions found are all identical to the true optimal solution for each 
algorithm. Similarly, the remaining four solutions in each of the sets of alternatives all appear to be 
entirely congruent with one another.

The fourth testing of the MGA procedure will be on the commonly evaluated constrained 
optimization problem from Aragon et al. (2010). The mathematical formulation for this test problem 
can be summarized as:

Min F(X) = x x x x x x x x x x
1

2

2

2

3
4

4

2

5
6

6
2

7
4

6 7 6
10 5 12 3 11 10 7 4 10−( ) + −( ) + + −( ) + + + − − −− 8

7
x  (28)

Subject to:

g1(X) = 2 3 4 5 127
1
2

2
4

3 4
2

5
x x x x x+ + + + − £ 0 (29)

g2(X) = 7 3 10 282
1 2 3

2
4 5

x x x x x+ + + − − £ 0 (30)
g3(X) = 23 6 8 196

1 2
2

6
2

7
x x x x+ + − − £ 0 (31)
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g4(X) = 4 3 2 5 12
1
2

2
2

1 2 3
2

6 7
x x x x x x x+ − + + − £ 0 (32)

-10 £ x
i
£ 10, i = 1, 2, 3, 4, 5, 6, 7 (33)

The optimal solution for the specific design parameters employed within this formulation is 
F(X*) = 680.6300573 with decision variable values of X* = (2.330499, 1.951372, -0.4775414, 
4.365726, 0.6244870, 1.038131, 1.594227) (Aragon et al., 2010). The MGA procedure was run 
to create the five maximally different solutions shown in Table 4. In line with the observations in 
the preceding experimentation, the best solutions determined by each metaheuristic are identical to 
the true optimal solution. Likewise, the sets of alternatives are all correspondingly very similar in 
structure to one another.

Taken together, the computational examples have illustrated how the new MGA data structure 
modelling can be used to simultaneously create multiple different alternatives by employing the 
various computationally efficient, population-based metaheuristics FA, BA, and CA. All options 
generated by the data structure MGA algorithm satisfy the requisite system criteria to within the 
pre-specified, 10% bound while remaining maximally different from each other within the decision 
space. In addition to their alternative creation proficiencies, the population-based aspect of each of 

Table 2. 
Five maximally different alternatives for the spring design problem generated by each algorithm

FIREFLY ALGORITHM F(X) x
1

x
2

x
3

Optimal found in Prelim. Step 0.0127 0.0517 0.3567 11.2871

Alternative 1 0.0128 0.0500 0.3164 14.1754

Alternative 2 0.0131 0.0500 0.3129 14.777

Alternative 3 0.0138 0.0523 0.348 13.3247

Alternative 4 0.0140 0.0535 0.3857 14.162

BAT ALGORITHM F(X) x
1

x
2

x
3

Optimal found in Prelim. Step 0.0127 0.0517 0. 3567 11.2871

Alternative 1 0.0128 0.0500 0.3165 14.1598

Alternative 2 0.0130 0.0521 0.3656 11.0667

Alternative 3 0.0132 0.0500 0.3167 14.6402

Alternative 4 0.0138 0.0523 0.348 13.3247

CUCKOO ALGORITHM F(X) x
1

x
2

x
3

Optimal found in Prelim. Step 0.0127 0.0517 0.3567 11.2871

Alternative 1 0.0128 0.0514 0.3472 12.0089

Alternative 2 0.0129 0.0529 0.3862 9.9684

Alternative 3 0.0137 0.0520 0.3629 12.1615

Alternative 4 0.0140 0.0557 0.4307 9.5783
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the metaheuristics simultaneously enables the MGA data structure algorithm to perform extremely 
well in terms of function optimization. It has been explicitly noted in Tables 1-4 that the best solutions 
determined by the MGA algorithm in each test instance, using each of the FA, BA, or CA, is always 
completely identical to the true optimal solutions found in Yang and Deb (2010), Cagnina et al. 
(2008), Loughlin et al. (2001), and Aragon et al. (2010), respectively.

In summary, this section has demonstrated the efficacy of employing the population-based MGA 
data structure procedure in conjunction with the FA, BA, and CA by testing it on four well-known 
benchmark problems. There are several key findings. First, the FA, BA, and CA are all excellent 
optimization methods. They always enabled the MGA procedure to determine the optimal solution 
to each of the benchmark problems in every instance. Second, in general, the evolutionary features 
operating within each of the FA, BA, and CA actually create more good alternatives than planners 
would be able to produce using other MGA techniques. This is due to the underlying evolving 
characteristics of population-based searches. Third, due to the inherent design of the MGA algorithm, 
the alternatives generated would be intrinsically suitable for planning purposes. Their decision-
variable structures are simultaneously maximally different from each other while falling within the 
user-specified bound of overall optimality (not just different from the optimal solution as in HSJ). 
Fourth, for each solution set for each test problem, irrespective of the actual population-based procedure 
employed, the alternatives within these sets are essentially identical in terms of range and distribution 
of decision-variable structures together with the similarity of their corresponding objectives. Fifth, 
the population-based MGA data structure algorithm is computationally efficient because it requires 
a single run of whatever population-based metaheuristic procedure is employed to generate its entire 
set of alternatives (not via multiple runs as under an HSJ-styled approach). Specifically, in order to 

Table 3. 
Five maximally different alternatives for the 100-peak multimodal optimization problem generated by each algorithm

FIREFLY ALGORITHM F(x,y) x y

Optimal found in Prelim. Step 5.14 0.97 0.97

Alternative 1 5.01 0.87 0.87

Alternative 2 5.00 0.76 0.98

Alternative 3 4.89 0.55 0.97

Alternative 4 4.65 0.33 0.97

BAT ALGORITHM F(x,y) x y

Optimal found in Prelim. Step 5.14 0.97 0.97

Alternative 1 5.05 0.87 0.98

Alternative 2 4.99 0.98 0.87

Alternative 3 4.74 0.34 0.98

Alternative 4 4.69 0.98 0.24

CUCKOO ALGORITHM F(x,y) x y

Optimal found in Prelim. Step 5.14 0.97 0.97

Alternative 1 5.10 0.98 0.97

Alternative 2 4.89 0.66 0.87

Alternative 3 4.77 0.87 0.45

Alternative 4 4.64 0.13 0.98
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generate P different solution alternatives, the population-based MGA data structure algorithm needs 
to run a single time, irrespective of the value of P.

As motivated in the earlier sections, many “real world” optimization applications are plagued by 
incongruent performance requirements that are extraordinarily difficult to quantify. Thus, it is never 
a disadvantage to construct a set of quantifiably good alternatives that provide distinct perspectives 
to any potentially unmodelled design issues introduced during the solution formulation stage. The 
unique performance features incorporated within these dissimilar alternatives may be able to provide 
very different system performance with respect to the unmodelled issues, possibly incorporating 
some of the unmodelled issues into the actual solution process. The evaluation testing on each of the 
benchmark problems clearly demonstrates all of these requisite, desirable characteristics.

CONCLUSION

Complex “real world” decision-making can prove very difficult and is frequently influenced by 
numerous unquantifiable issues, unmodelled objectives and uncertain factors. These decision 
environments frequently contain incompatible design specifications that are problematic – if not 
impossible – to incorporate when ancillary decision support models are constructed. Invariably, 
there are unmodelled elements, not apparent during model formulation, that can significantly affect 
solution adequacy. With so much uncertainty, it is doubtful that any single solution could ever be 
constructed that concurrently fulfills all of the incongruent system requirements. Therefore, any 

Table 4. 
Five maximally different alternatives for the constrained optimization problem generated by each algorithm

FIREFLY ALGORITHM F(X) x
1

x
2

x
3

x
4

x
5

x
6

x
7

Optimal from Prelim. Step 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942

Alternative 1 687.580 2.2892 1.8985 -0.4605 4.3364 -0.5962 1.0208 1.5782

Alternative 2 706.837 2.2913 1.9003 -0.3965 4.3548 -0.6388 1.0796 1.6023

Alternative 3 718.478 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230

Alternative 4 744.901 2.3468 1.9118 -0.4087 4.3557 -0.6283 0.9899 1.6024

BAT ALGORITHM F(X) x
1

x
2

x
3

x
4

x
5

x
6

x
7

Optimal from Prelim. Step 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942

Alternative 1 683.917 2.3025 1.9353 -0.4881 4.3333 -0.6169 1.0355 1.5889

Alternative 2 696.899 2.2934 1.9096 -0.4397 4.3369 -0.6616 1.0331 1.6176

Alternative 3 718.478 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230

Alternative 4 741.897 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230

CUCKOO ALGORITHM F(X) x
1

x
2

x
3

x
4

x
5

x
6

x
7

Optimal from Prelim. Step 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942

Alternative 1 687.022 2.3056 1.9076 -0.4245 4.3256 -0.6184 1.0388 1.6067

Alternative 2 705.926 2.3080 1.9171 -0.4724 4.3343 -0.6578 1.053 1.6078

Alternative 3 711.793 2.3174 1.9111 -0.4084 4.3668 -0.6166 1.0759 1.6116

Alternative 4 730.091 2.2892 1.8985 -0.4605 4.3364 -0.5962 1.0208 1.5782
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decision support approach must somehow address these complicating features in some way, while 
simultaneously being flexible enough to condense the potential effects within the intrinsic planning 
incongruities. Hence the need for MGA approaches.

In this study, an MGA data structure procedure was tested to demonstrate how three widely-
employed, population-based metaheuristics could be employed to simultaneously produce numerous 
maximally different alternatives. This population-based MGA data structure approach is designed to 
always generate a set of dissimilar solution options, such that each generated alternative contributes 
an entirely different perspective to the problem. The set of maximally different alternatives produced 
by the computationally efficient MGA data structure algorithm supplies contrasting solutions that can 
introduce very different perspectives to the problem-solving process while still performing robustly 
with respect to the requisite performance measures. Consequently, these alternatives could potentially 
capture possibilities completely overlooked under more traditional modelling approaches that can 
now be incorporated into the decision-making.

The computational effectiveness from employing the MGA algorithm in conjunction with the FA, 
BA, and CA metaheuristics was demonstrated on four well-known, widely-tested, highly-nonlinear 
benchmark problems. The MGA computational procedure under each metaheuristic created not only 
a very similar set of near-best, maximally different alternatives for each tested problem, but also 
determined the optimal solution in every instance. Hence, the testing on the FA, BA, and CA methods 
clearly demonstrated that each of these population-based procedures is highly effective for MGA 
purposes and that the algorithms are, effectively, mutually interchangeable from a computational 
performance perspective. Furthermore, since population-based metaheuristics can be adapted to a wide 
spectrum of problem types, the adaptability of this population-based MGA approach can be extended 
into numerous different problem domains. Extensions to the procedure using other population-based 
metaheuristic algorithms will be examined in forthcoming studies.
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