
DOI: 10.4018/IJORIS.321119

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Computational Comparison of
Three Nature-Inspired, Population-
Based Metaheuristic Algorithms for
Modelling-to-Generate Alternatives
Julian Scott Yeomans, York University, Canada*

ABSTRACT

In “real life” decision-making situations, inevitably, there are numerous unmodelled components, not
incorporated into the underlying mathematical programming models, that hold substantial influence
on the overall acceptability of the solutions calculated. Under such circumstances, it is frequently
beneficial to produce a set of dissimilar–yet “good”–alternatives that contribute very different
perspectives to the original problems. The approach for creating maximally different solutions is
known as modelling-to-generate alternatives (MGA). Recently, a data structure that permits MGA
using any population-based solution procedure has been formulated that can efficiently construct
sets of maximally different solution alternatives. This new approach permits the production of an
overall best solution together with n locally optimal, maximally different alternatives in a single
computational run. The efficacy of this novel computational approach is tested on four benchmark
optimization problems.

KeywORdS
Bat Algorithm, Cuckoo Algorithm, Firefly Algorithm, Metaheuristic Algorithms, Modelling-to-Generate
Alternatives, Population-Based Algorithms

INTROdUCTION

Multifarious real-world decision-making environments are frequently confounded by ambiguous
and incompatible structural specifications that can prove difficult to incorporate into mathematical
decision models (Belarbi et al., 2017; Brugnach et al., 2007; Janssen et al., 2010; Matallah et al., 2017;
Matthies et al., 2007; Mowrer, 2000; Walker et al., 2003). While “optimal” solutions can normally
be calculated for the mathematical formulations, these answers may not produce the best outcomes
in the original real system (Acharjya & Anitha, 2017; Brugnach et al., 2007; Fahad et al., 2017;
Janssen et al., 2010; Loughlin et al., 2001). To improve decision-making under such circumstances,

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

2

it is often preferable to create a limited number of dissimilar options that contribute very different
perspectives (Matthies et al., 2007; Puri et al., 2020; Yeomans & Gunalay, 2011). Preferably these
alternatives should all possess good (i.e. near-optimal) objective measures with respect to their
modelled objective(s), but be maximally different from each other in terms of the system structures
characterized by their decision variables. Several approaches collectively referred to as modelling-
to-generate-alternatives (MGA) have been developed in response to this multi-solution creation
requirement (Brill et al., 1982; Loughlin et al., 2001; Yeomans & Gunalay, 2011).

The primary impetus behind modelling-to-generate-alternatives (MGA) is to create a manageably
small set of alternatives that are good with respect to all measured objective(s) yet are as fundamentally
different as possible from each other within the prescribed decision space. By adopting a maximally different
approach, the resultant alternative solution set is likely to provide very different perspectives with respect
to any unmodelled issues, while simultaneously providing different choices that all perform somewhat
similarly with respect to the modelled objectives (Walker et al., 2003). Decision-makers must conduct
subsequent assessments of the alternatives to ascertain which specific option(s) most closely satisfies their
underlying circumstances (Arrais-Castro et al., 2015). Consequently, MGA approaches are necessarily
classified as decision support processes rather than as the explicit solution determination methods generally
assumed for optimization (see Benatia et al., 2016; Sharma & Virmani, 2017; Strand et al., 2017).

The earliest MGA procedures employed a relatively straightforward approach in which each
alternative was incrementally formulated by re-running the solution generation algorithm whenever a
new option had to be produced (Baugh et al., 1997; Brill et al., 1982; Loughlin et al., 2001; Yeomans &
Gunalay, 2011; Zechman & Ranjithan, 2004). These iterative procedures mimicked the seminal Hop-
Skip-Jump (HSJ) MGA approach of Brill et al. (1982) in which, once an initial problem formulation
has been optimized, all supplementary alternatives are produced one-by-one. Consequently, these
iterative procedures all require n+1 runnings of their respective algorithms to optimize the initial
problem followed by the creation of n alternatives (Imanirad & Yeomans, 2013; Imanirad et al., 2012a;
Yeomans & Gunalay, 2011). These MGA approaches were subsequently extended to generate sets of
maximally different solution alternatives in Yeomans (2018a, 2018b, 2018c), Imanirad and Yeomans
(2013), and Imanirad et al. (2012b, 2013a, 2013b, 2013c).

Recently, Gunalay & Yeomans (2019) and Yeomans (2018d, 2019a, 2019b) introduced a data
structure that permits both optimization and MGA using any population-based solution procedure.
Specifically, this new data-structure-based approach to MGA enables the simultaneous generation of
the overall best solution together with an additional set of m-1 locally optimal, maximally different
alternatives in a single computational run. Namely, to generate the additional m-1 maximally different
solution alternatives, the MGA algorithm would need to run exactly the same number of times that
an optimization procedure would need to be run for function optimization purposes alone (i.e. once)
irrespective of the value of m (Yeomans 2017a, 2017b). Consequently, this simultaneous procedure
could be considered extremely computationally efficient for MGA purposes.

Numerous metaheuristic approaches have been developed for use in a variety of decision-making
environments (for some recent examples, see: Gergin et al. 2019; Jain & Yada 2021; Murali et al.
2022; Vasant et al. 2020). For calculation and optimization purposes, Yang (2009, 2010) created three
population-based metaheuristics: the Firefly Algorithm (FA), the Bat Algorithm (BA), and the Cuckoo
Algorithm (CA). These three nature-inspired procedures have been shown to be more computationally
efficient than the more commonly-used enhanced particle swarm, genetic algorithm, and simulated
annealing metaheuristic procedures (Cagnina et al., 2008; Gandomi et al., 2011; Yang & Yeomans
2014) and have been applied to an extremely diverse spectrum of problem settings (Acharjee &
Chaudhuri 2022; Aggrawal & Anuja 2022; Bangyal et al. 2021; Bharathi 2022; Chandrasekaran &
Simon 2014; Garg & Kumar 2021; Gopu & Venkataraman 2021; Pandey & Bannerjee 2021; Rahman
et al. 2019; Rautry et al. 2019; Wang & Ji 2021).

In this paper, for the first time, the efficacy of employing the novel population-based MGA
data structure approach in conjunction with the FA, BA, and CA is computationally examined using

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

3

the highly-nonlinear, well-known benchmark optimization problems: (i) the bivariate Michalewicz
function (Cagnina et al., 2008), (ii) the “spring design” problem (Aragon et al., 2010), (iii) a 100-peak
multimodal optimization problem (Loughlin et al., 2001), and a constrained optimization problem
(Aragon et al. 2010)..

MOdeLLING TO GeNeRATe ALTeRNATIVeS

Optimization techniques have traditionally focused almost exclusively on determining a unique
optimal solution to problem formulations with single-objectives or, equivalently, constructing a
set of noninferior solutions to problems possessing multiple-objectives (Brill et al., 1982; Janssen
et al., 2010; Walker et al., 2003). While these mathematical programming methods may solve the
modelled problems strictly as formulated, whether the results truly provide the “best” answer(s) in
their corresponding “real world” implementation is far less obvious (Brill et al., 1982; Brugnach et
al., 2007; Janssen et al., 2010; Loughlin et al., 2001). The majority of “real” decision environments
generally possess several system components that are not incorporated into the underlying modelling
during the problem formulation stage (Brugnach et al., 2007; Walker et al., 2003). Inevitably,
numerous subjective aspects are neither quantified nor modelled in the mathematical representation.
Such subjective omissions generally occur when final decisions must be based not only on modelled
objectives, but also on less tangible socio- economic and political stakeholder viewpoints (Yeomans
& Gunalay, 2011). Numerous illustrations of these “real world” modelling decision biases and
incongruencies can be found in Baugh et al. (1997), Brill et al. (1982), Loughlin et al. (2001) and
Zechman and Ranjithan (2004).

When unmodelled components or unquantified objectives are known or suspected to exist,
alternate solution approaches become requisite. These methods must not only explore the solution
space for noninferior solutions, but also must examine the feasible region for demonstrably inferior
solutions to the problem as modelled. To explicitly reiterate this requirement, any search for good
alternatives to “real world” problems possessing unmodelled objectives must necessarily explore both
the problem’s non-inferior solution set and also its corresponding inferior region.

To illustrate a solution search process for a single-objective maximization problem with
unmodelled objectives, assume that the mathematically optimal objective value is Z1* for the solution
X*. Further assume that a second, unquantifiable, socio-political, maximization objective Z2 also
exists. Let the (unknown) two-objective, noninferior solution, Xc, correspond to a best compromise
solution if both objectives had been known and considered simultaneously. While Xc represents a
best solution to the real problem, it would be considered inferior to X* in the mathematical model
because Z1c £ Z1* by definition. Thus, when unquantified elements are brought into a decision-
making process, mathematically inferior decisions to the modelled system could, in fact, become
optimal for the underlying real problem. Necessarily, if unquantified components and unmodelled
objectives exist, alternative solution procedures must not only search the decision space of the modelled
problem for noninferior solutions, but concurrently explore the decision region for patently inferior
solutions.

Consequently, under such circumstances, the solution process requires the creation of a set of
options that are quantifiably good with respect to all modelled objectives yet remain as-different-as-
possible from each other within the feasible region. By achieving this maximal difference condition,
the resultant set of alternatives contributes diverse perspectives that perform similarly with respect to
all modelled objective(s) yet potentially dissimilarly with respect to any unmodelled components. By
constructing these as-different-as-possible alternatives, the decision makers can consider desirable
aspects within the options that may address the various unmodelled objectives to varying degrees
of stakeholder acceptability.

It becomes necessary to formalize the mathematical definition of maximal difference in order
to characterize the solution process (Loughlin et al., 2001; Yeomans & Gunalay, 2011). Let the

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

4

optimal solution to a mathematical model be X* with corresponding objective calculated as Z* =
F(X*). The ensuing maximal difference model can be evaluated to produce the alternative, X, that
is maximally different to X*:

Maximize D (X, X*) =
iå | Xi - Xi* | (1)

Subject to: XÎD (2)
| F(X) - Z*| £ T (3)

where D is a difference function (an absolute difference function in this instance), D is the feasible
domain of the original mathematical model, and T represents some permissible user-defined target
deviation relative to the original optimal value Z*. In effect, T determines what proportion of the
inferior region will be explored in the search for acceptable alternatives. The notion of difference can
be extended into a measure between any set of alternatives by replacing X* in the maximal difference
model’s objective and evaluating the sum (or another desired function) of the pairwise differences
between each pair of alternatives – subject to a condition that each alternative falls within the specified
tolerance and is feasible. The strengths and drawbacks of numerous alternative difference functions
have been considered extensively by Yeomans (2019c, 2019d, 2019e, 2019f, 2019g, 2020a).

The new population-based MGA data structure approach described in the next section generates
a pre-determined number of maximally different alternatives by exploiting the population structure
within metaheuristic algorithms. The evolution that occurs throughout the population enables the
procedure to simultaneously investigate sets of diverse local optima throughout the entire solution
space. The survival of each solution in the population depends upon how it performs both with respect
to the original model’s objective(s) as well as by the distance each alternative is from all of the other
generated alternatives in the feasible region.

POPULATION-BASed SIMULTANeOUS MGA COMPUTATIONAL ALGORITHM

This section provides a synopsis of the state-of-the-art in population-based MGA research. The most
logical initial MGA algorithmic approach to create each alternative iteratively increments the target, T,
by some amount and then solves the resulting maximum difference model (Yeomans, 2018c, 2018d).
Such a one-at-a-time method is directly analogous to the HSJ approach of Brill et al. (1982). In HSJ,
once an initial optimization has been completed, additional alternatives are produced sequentially by
incrementing the target constraint to force the supplementary construction of suboptimal solutions.
This straightforward approach necessitates n subsequent executions of the principal optimization
routine to produce the n alternatives (Imanirad & Yeomans, 2013; Imanirad et al., 2012a; Yeomans
& Gunalay, 2011).

To improve upon the step-by-step requirement in HSJ, Imanirad et al. (2012a, 2012b, 2013b) used
co-evolution to create a concurrent MGA solution technique. In concurrent co-evolution, the overall
population of a metaheuristic is stratified into pre-specified subpopulations that permit the search
procedure to evolve collectively into a number of maximally different solutions. Each alternative is
represented by a specific subpopulation. Evolutionary survival within a subpopulation depends upon
both solution quality with respect to the modelled objective(s) and by how far away each alternative
(i.e. subpopulation) is from all of the other alternatives (i.e. the other sub-populations). Evolution
into a local optimum in any one subpopulation is directly influenced by the set of existing solutions
in every other subpopulation. It is this concurrent influence that forces each subpopulation to co-
evolve into maximally distant regions of the feasible region (Yeomans & Gunalay, 2011). Because
co-evolution concurrently generates an entire set of maximally different alternatives from the single
sub-divided population, this population-based procedure is much more computationally efficient
than its earlier sequential HSJ counterpart (Imanirad & Yeomans, 2013; Imanirad et al., 2013b).

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

5

Although concurrent MGA procedures exploit the structure of population-based algorithms, the actual
co-evolution, itself, only occurs within each stratified subpopulation. Unfortunately, this implies that
any maximal differences measured between solutions in different subpopulations can only be based
upon aggregated subpopulation values.

To counteract this aggregation shortcoming, Yeomans (2018d, 2019a, 2019b) and Gunalay
& Yeomans (2019) created a novel data structure that could be used by any population-based
metaheuristic for multicriteria MGA. In the ensuing MGA algorithm, each solution in the population
represents exactly one potential set of alternatives and the maximal difference is calculated only
within that particular solution. Consequently, by the evolutionary nature of population-based searches,
the maximal difference will be simultaneously calculated over the specific alternatives within each
specific solution – which circumvents any need for concurrent subpopulation aggregation measures.

Suppose that decision-makers wish to generate P different solution alternatives in which each
solution possesses n decision variables. Assume that a population-based metaheuristic is to be
used and that the population algorithm will contain K solutions, in total. To accomplish the MGA
requirement, each solution in the population is designed to contain P maximally different alternatives.
Assume that Yk, k = 1,…, K, corresponds to the kth solution, so that Yk provides one complete set of
P different alternatives. If Xkp represents the pth alternative, p = 1,…, P, of solution k, k = 1,…, K,
then Yk can be written as:

Yk = [Xk1, Xk2,…, XkP] . (4)

If Xkjq, q = 1, …, n is the qth variable in the jth alternative of solution k, then:

Xkj = (Xkj1, Xkj2,…, Xkjn) . (5)

The entire population, Y, in vector form consists of K different sets of P alternatives expressed as:

Y’ = [Y1, Y2,…, YK] . (6)

Using this data structure, Yeomans (2018d, 2019a, 2019b) and Gunalay and Yeomans (2019)
constructed the subsequent simultaneous MGA method that can be easily modified for solution via
any population-based algorithm. The approach proceeds by creating its pre-specified number of
maximally different alternatives, by adjusting the value of the bound T in the maximal difference
model, and by solving the corresponding maximal difference problem. Due to the format of the data
structure noted above, each and every solution within the population corresponds to exactly one set
of P distinct alternatives. Based upon the evolutionary process within the population, the procedure
collectively evolves each solution toward different local optima within the solution space. Solution
survival is contingent upon both how the alternative performs with respect to modelled objective(s)
and how far apart they are in the decision space from all other generated alternatives.

The steps in this simultaneous MGA algorithm are as follows (Gunalay & Yeomans, 2019;
Yeomans, 2018d, 2019a, 2019b):

Preliminary Step. Determine X*, the best solution to the original problem formulation. P
corresponds to the required number of maximally different alternatives to be generated within a
prescribed target deviation from X*. Note that the value of P is fixed by the decision maker, a priori.
Create P target values based on the calculated objective value F(X*). Without loss of generality, this
preliminary step can be ignored. The algorithm could solve for X* in conjunction with the subsequent
steps. If this were the case, the initial algorithmic stages would be devoted to the search for X*.
This would render the remaining components within each solution as “computational overhead.”
Consequently, the number of computational iterations would have to increase.

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

6

Step 1. Generate the initial population of size K with each solution partitioned into P equally
sized divisions. Each partition size represents the number of decision variables in the original problem
formulation. Xkp corresponds to the pth alternative, p = 1, …, P in solution Yk, k = 1, …, K.

Step 2. In each of the K solutions, evaluate each Xkp, p = 1, …, P, using the modelled objective.
Alternatives that satisfy both their target constraint and all the other problem constraints are deemed
to be feasible, whereas all remaining alternatives are designated infeasible. Each individual solution in
the population would only be designated feasible if every alternative contained within it was feasible.

Note: If the best-solution-found-so-far is always retained over each iteration, at least one feasible
solution will always exist. At the very least, one feasible solution can always be constructed by using
P repetitions of the solution X* found in the initialization step.

Step 3. Implement an appropriate elitism operator to rank order the best solutions within the
population. The best solution will be the feasible solution containing the most distant set of alternatives
within the feasible region (distance measures will be declared in Step 5).

Step 4. If the designated termination criterion has been met (e.g., maximum number of iterations,
solution convergence, etc.), stop the algorithm. Otherwise, proceed to Step 5.

Step 5. For each solution Yk, k = 1, …, K, calculate the distance measure, D1
k, between all of the

alternatives contained within it.
One example of an appropriate distance measure is calculated as:

D1
k = D1 (Xka,Xkb) =

a toP=∑ 1 b toP=∑ 1 q n=∑ 1...
| Xkaq – Xkbq | . (7)

This measure represents the total absolute pairwise distance between every alternative contained
within solution k. Alternative distance measures could be determined by some other appropriately
defined function. Any measure could be appropriately modified to incorporate violation penalties
corresponding to infeasibility within the solutions.

Step 6. Rank order all solutions based upon D1
k. The goal of maximal difference is to force

the alternatives within each solution as far apart as possible. This step orders the specific solutions
based upon those solutions which contain alternatives that are most distant from each other in the
decision space.

Step 7. Implement the required evolutionary “change operations” to each solution in the population
and return to Step 2.

FIReFLy ALGORITHM

Although this section provides a brief overview of the FA, more extensive descriptions can be found
in Yang (2009, 2010) and Yang and Yeomans (2014). The FA is a population-based metaheuristic
that possesses three ideals inspired by the natural world: (1) All fireflies within a population are
considered unisex, implying that any one firefly could be attracted to any other firefly regardless
of their sex; (2) Relative attractiveness between any two fireflies is directly proportional to their
brightness, meaning that a less brightly flashing firefly will always move toward a brighter one.
Furthermore, relative brightness and attractiveness will both decrease as the distance between them
increases. If there is no brighter firefly visible within its vicinity, then that particular firefly moves
about randomly; and (3) A firefly’s brightness is based upon the value of the objective function.
Specifically, for any maximization problem, the brightness is considered to be directly proportional
to the objective function value. Based upon these ideals, Yang (2010) used the based following
pseudo-code to summarize the FA’s basic operational steps.
Objective Function F(X), X = (x

1
, x

2
,… x

d
)

Generate the initial population of n fireflies, X
i
, i = 1, 2,…, n

Light intensity I
i
 at X

i
 is determined by F(X

i
)

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

7

Define the light absorption coefficient γ
while (t < Max number of generations) or (Stop criterion)
 for i = 1: n, all n fireflies
 for j = 1: n, all n fireflies (inner loop)
 if (I

i
 < I

j
), Move firefly i towards j; end if

 Vary attractiveness with distance r via e- γr
 end for j
 end for i
 Rank the fireflies and find the current global best solution G*
end while
 Postprocess the results

There are two important issues to resolve when implementing the FA: (i) the variation of light
intensity and (ii) the formulation of attractiveness. For simplicity, it is assumed that any firefly’s
attractiveness depends upon its brightness which, in turn, depends upon the calculated objective
function value. For the basic situation, firefly brightness at location X is calculated as its objective value
F(X). However, the attractiveness, β, between fireflies is relative and varies based upon the distance rij
between firefly i and firefly j. Additionally, because the light intensity decreases with the distance from
its source and the light can also be absorbed by the surrounding media, the attractiveness is allowed
to vary based upon the degree of absorption. Consequently, firefly attractiveness is calculated as:

β = β0 exp(-γr2) (8)

where β0 represents attractiveness at distance r = 0, while γ represents the light absorption coefficient
in a particular medium. If the distance rij between fireflies i and j located at Xi and Xj, respectively,
is calculated using a Euclidean norm, then the movement of the firefly i that is attracted to the more
attractive (i.e. brighter) firefly j is calculated as:

Xi = Xi + β0 exp(-γ(rij)
2)(Xi – Xj) + αεi . (9)

In this movement expression, the second term represents relative attraction and the third
component introduces an element of randomness. Yang (2009, 2010) asserts that α is a randomization
parameter generally selected within the [0,1] range and εi represents a vector of random numbers
drawn from either the uniform (generally [-0.5,0.5]) or Gaussian distributions. This expression
represents a random walk biased towards brighter fireflies, becoming a simple random walk when
β0 = 0. The parameter γ embodies variation in attractiveness and controls the overall speed of
convergence for the FA. In general, γ is fixed at a value between 0.1 to 10 (Gandomi et al., 2011;
Yang, 2010). In an optimization problem containing a very large number of fireflies n >> k, where
k is the number of local optima, the initial locations for the n fireflies ought to be distributed uniformly
throughout the search space. As the FA proceeds, the fireflies tend to converge into all k local optima
(Yang, 2009, 2010). Under such circumstances, the global optima can be easily determined by
identifying the best solution(s) among all these optima. Yang (2010) demonstrated that the FA will
approach the global optima whenever n → ¥ and the number of iterations t, is set so that t >>1. In
practice, the FA has been found to converge extremely quickly (Gandomi et al., 2011; Yang, 2009,
2010).

Two important asymptotic cases occur for γ → 0 and γ → ¥ . When γ → 0, the attractiveness
remains as the constant β = β0, which is equivalent to light intensity that does not decrease. This
implies that a firefly always remains visible from anywhere in the solution domain. Hence, a single
(usually global) optima can easily be reached. If Xj is replaced by the current global best solution,
G*, then the FA becomes a special instance of the accelerated particle swarm optimization (PSO)
algorithm. The computational efficiency of this special case is equivalent to enhanced PSO. Conversely,

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

8

whenever γ → ¥ , relative attractiveness becomes zero with respect to the view between any firefly
pair. This corresponds to the situation in which fireflies simply roam through an impenetrably thick
region of fog. Furthermore, each firefly must roam in a completely random fashion because no other
fireflies are ever visible and corresponds to a random search method. Because the FA generally
operates between these asymptotic extremes, it becomes possible to adjust α and γ so that the FA
outperforms both enhanced PSO algorithms and random searches (Gandomi et al., 2011).

What differentiates the FA from other population-based metaheuristics, is that it converges
simultaneously into a specified number of local optima (including the global ones) in highly non-linear
optimization problems (see, also: Arun et al., 2017; Dekhici et al., 2015, Yeomans 2020a, 2020b). As
noted, within the two asymptotic extremes, the population in the FA can concurrently determine both
global optima as well as local optima. With a judicious selection of parameter settings, the FA can
simultaneously converge extremely quickly into both local and global optima (Gandomi et al., 2011;
Yang, 2009, 2010; Yang & Yeomans 2014). Imanirad & Yeomans (2013) have illustrated how the FA’s
abilities to find multiple local optima can be modified to produce n maximally different alternatives as
required for MGA. Concurrent population-based procedures have been shown to possess significant
computational efficiency for MGA purposes (Yeomans & Gunalay, 2011). Consequently, an additional
advantage in using an FA for MGA is that, because the different fireflies will independently tend to
aggregate more closely around each local optimum, the FA procedures prove far better than genetic
algorithms and PSO for MGA (Gandomi et al., 2011; Yang, 2010).

BAT ALGORITHM

This section provides a concise synopsis of the population-based BA metaheuristic that is covered
in significantly greater detail in Yang (2009, 2010) and Yeomans (2021). Each bat in the population
corresponds to one potential solution to a problem and the initial population of fireflies is distributed
randomly and uniformly throughout the decision space. The BA operates under the following three
ideals: (i) All bats use echolocation to sense distance and can distinguish between food/prey and
background barriers; (ii) Bats fly randomly with velocity vi at position xi with a fixed frequency fmin
(or wavelength λ), varying wavelength λ (or frequency f) and loudness A0 to search for prey. They can
automatically adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse
emission r within the range [0,1] depending upon the proximity to their target; and, (iii) Although
the loudness can vary in many ways, it can be assumed that loudness actually varies from a large
(positive) A0 down to some minimum value Amin. The operational steps of the BA are summarized in
the following pseudo-code (Yang 2010).
Objective Function F(X), X = (x

1
, x

2
,… x

d
)

Initialize population of n bats, X
i
, i = 1, 2,…, n and vi

Initialize pulse rates r
i
 and the loudness A

i
.

Define the pulse frequency f
i
 at X

i
.

while (t < Max number of generations) or (Stop criterion)
Generate new solutions by adjusting frequency, and updating
velocities and locations/solutions
 if (rand > r

i
)

 Select a solution among the best solutions
 Generate a local solution around the selected best
solution
 end if
 Generate a new solution by flying randomly
 if (rand < A

i
) & (F(X

i
) < F(X*))

 Accept the new solutions
 Increase r

i
 and reduce A

i

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

9

 end if
Rank the bats and find the current best solution X*
end while
 Postprocess the results and generate any visualizations

In the BA, the virtual bats are simulated. Certain rules are adopted to define how their positions
xi and velocities vi in the d-dimensional search space are updated. The solutions/positions xit and
velocities vit at time step t are determined by:

fi = fmin + (fmax - fmin) β (10)
vit = vit-1 + (xiy – x*) fi (11)
xit = xit-1 + vit (12)

where β is a random vector with each element generated from a uniform distribution over the range
[0,1]. The value x* is the current global best solution which is determined by comparing all the
solutions among the n bats in the n-dimensional solution vector x. Initially each bat is assigned a
random frequency drawn uniformly from the interval [fmin, fmax]. For the local search portion, once a
solution is selected among the current best solutions, a new solution for each bat is generated locally
using a random walk:

xnew = xold + εAt (13)

where ε is a random vector in the range [-1,1] and At is the average loudness of all the bats at this
time step, t.

The loudness Ai and the rate of pulse emissions, ri, have to be updated accordingly as the iterations
proceed. As the loudness usually decreases once the bat has found its prey while the rate of pulse
emissions increases, the loudness can be chosen as any value of convenience. For simplicity, one
can use A0 = 1 and Amin = 0, assuming that Amin = 0 implies that a bat has just found the prey and
temporarily stops emitting any sound. Thus:

Ait+1 = α Ait, rit+1 = ri0 [1 – exp(γ t)] (14)

where α and γ are constants. The choice of parameters requires some experimenting, but in the simplest
case α = γ. Initially, each bat should have different values for their loudness and emissions rate, and
this can be achieved via randomization. The loudness and emissions rates will only be updated by
the algorithm if the new solutions provide an improvement, which means that the bats are actively
moving towards the optimal solution. The algorithm proceeds either until some convergence condition
has been achieved or for a maximum number of iterations (Gandomi et al., 2011; Yang, 2009, 2010).

CUCKOO ALGORITHM

This section provides a very brief outline of the CA procedure that is covered in significantly greater
detail in Yang (2009, 2010) and Yang and Deb (2010). The CA is a nature-inspired, population-based
metaheuristic in which each cuckoo egg represents one possible solution. The CA operates under
the following three idealized rules: (i) Each cuckoo lays a single egg at a time and deposits it in a
randomly chosen nest; (ii) The best nests with highest quality of eggs (solutions) will carry over to the
next generations; and, (iii) The number of available host nests is fixed, and a host bird can discover
an alien egg with probability Pa within the range [0,1]. In the case of detection, the host bird can
either throw the egg away or abandon the nest so as to build a completely new nest in a new location.

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

10

For simplicity, this last assumption can be approximated by a fraction Pa of the n nests being
replaced by new nests (with new random solutions provided at each new location). For a maximization
problem, the quality or fitness of a solution is simply proportional to the objective function value.
Alternative forms of fitness could also be defined in analogous fashion.

The operational steps of the BA can be summarized in the following pseudo-code (Yang 2010):
Objective Function F(X), X = (x

1
, x

2
,… x

d
)

Initialize population of n host nests, X
i
, i = 1, 2,…, n

while (t < Max number of generations) or (Stop criterion)
 Randomly select a cuckoo (say i) and generate a new solution by
Levy flights
 Evaluate its quality/fitness, F

i

 Randomly choose a nest among n (say j)
 if (F

i
 > F

j
)

 Replace j by the new solution
 end if
 Abandon a fraction (P

a
) of worse nests and build new ones at new

locations via Levy flights
 Build new nests at new locations
 Keep the best solutions (or nests with quality solutions)
 Rank the solutions and find the current best solutions
end while
 Postprocess the results and generate any visualizations
When generating new solutions X

i
(t+1) for cuckoo i, a Levy flight is

performed:

Xi
(t+1) = Xi

(t) + α ⊕Levy(λ) (15)

where α >0 is a step size related to the scale of the problem. In most cases, α = O(1) can be employed
and the product ⊕ implies entry-wise multiplications. Levy flights essentially provide a random walk,
while their random steps are drawn from a Levy distribution for large steps:

Levy ~ u = t λ, 1< λ ≤ 3 (16)

which has an infinite variance with an infinite mean. Here, the consecutive jumps/steps of a cuckoo
essentially form a random walk process which obeys a power-law step-length distribution with a
heavy tail (see Yang, 2010).

COMPUTATIONAL TeSTING OF THe MGA ALGORITHM

As outlined earlier, “real world” decision-makers often prefer to be able to choose from a set of
close-to-optimal alternatives that significantly differ from each other in terms of the system structures
characterized by their decision variables. The effectiveness of the novel MGA data structure procedure
introduced in the previous section to simultaneously produce maximally different alternatives will
be evaluated against four frequently-tested, well-known benchmark problems. In each test, the target
constraint is set so that all of the alternatives produced can fall within, at worst, 10% of the best
objective value determined.

The first computational test uses the multimodal bivariate Michalewicz function problem taken
from Yang and Deb (2010). The mathematical formulation for the tested instance of the bivariate
Michalewicz function is:

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

11

Minimize F(x, y) = - Sin(x)Sin2m x
2

p

 - Sin(y)Sin2m 2
2y

p

 (17)

0.0 £ x£ 5.0 0.0 £ y£ 5.0 m = 10 (18)

The highly non-linear feasible region of this problem contains a considerable number of peaks
(local optima) separated by a proportionately large number of valleys. For the design parameters
employed in this specific instance of the formulation, the best solution of F(x, y) =

-1.8013 occurs at the point (x, y) = (2.20319, 1.57049) (Yang & Deb, 2010). The MGA approach
outlined in the previous section was run to produce five maximally different solutions shown in Table
1. As can be observed, the best solutions determined by each algorithm, respectively, match the true
optimal solution for the Michalewicz formulation. Furthermore, the remaining four alternatives created
by each algorithm all composed of a similar range of solution instances.

The second application of the MGA procedure is illustrated using the spring design problem
taken from Cagnina et al. (2008). The design of a tension and compression spring has frequently
been employed as a benchmark problem for constrained engineering optimization problems (Aragon
et al., 2010; Cagnina et al., 2008). The spring problem involves three design variables: (1) x

1
, the

wire diameter; (2) x
2

, the coil diameter; and (3) x
3

, the length of the coil. The aim is to essentially
minimize the weight subject to constraints on deflection, stress, surge frequency, and geometry. The
mathematical formulation for this test problem can be summarized as:

Minimize F(X) = x x x
1
2
2 3
2+() (19)

Table 1.
Five maximally different alternatives for the Michalewicz function generated by each algorithm

FIREFLY ALGORITHM F(x,y) x y

Optimal found in Preliminary Step -1.80 2.20 1.57

Alternative 1 -1.78 2.23 1.58

Alternative 2 -1.73 2.26 1.56

Alternative 3 -1.65 2.30 1.56

Alternative 4 -1.58 2.08 1.56

BAT ALGORITHM F(x,y) x y

Optimal found in Preliminary Step -1.80 2.20 1.57

Alternative 1 -1.76 2.16 1.55

Alternative 2 -1.72 2.26 1.59

Alternative 3 -1.63 2.31 1.56

Alternative 4 -1.62 2.31 1.58

CUCKOO ALGORITHM F(x,y) x y

Optimal found in Preliminary Step -1.80 2.20 1.57

Alternative 1 -1.76 2.15 1.56

Alternative 2 -1.65 2.10 1.56

Alternative 3 -1.63 2.31 1.56

Alternative 4 -1.58 2.08 1.56

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

12

Subject to: g1(X) = 1 –
x x

x
2
3
3

1
471785

 £ 0 (20)

g2(X) =
4

12566
2
2

1 2

1
3
2 1

4

x x x

x x x

−

−()
+ 1

5108
1
2x

– 1 £ 0 (21)

g3(X) = 1 –
140 45

1

2
2
3

. x

x x
£ 0 (22)

g4(X) =
x x
1 2

1 5

+

.
– 1 £ 0 (23)

0.05 £ x
1
£ 2.0 0.25 £ x

2
£ 1.3 2.0 £ x

3
£ 15.0 (24)

The optimal solution for the specific design parameters employed within this formulation is
F(X*) = 0.0127 with decision variable values of X* = (0.051690, 0.356750, 11.287126) (Cagnina et
al., 2008). The MGA procedure was used to create the five maximally different solutions shown for
each algorithm in Table 2. As with the Michalewicz problem, the best spring design solutions found
for each algorithm are all identical to the actual optimal solution. As with the previous test, all four
of the remaining alternatives are comprised of a very similar set of solution instances.

The third MGA solution creation application will be tested on the 100-peak multimodal
optimization problem taken from Loughlin et al. (2001). The mathematical formulation for this
multimodal test problem is:

Maximize F(x, y) = Sin(19πx) + x
1 7.

+ Sin(19πy) + y
1 7.

+ 2 (25)

0.0 £ x£ 1.0 (26)
0.0 £ y£ 1.0 (27)

The corresponding feasible region for this highly-nonlinear problem contains 100 peaks separated
by valleys with the amplitudes of both the peaks and valleys increasing as the values of the decision
variables increase from their lower bounds of (0,0) toward their upper limits at (1,1). For the design
parameters employed in this specific problem formulation, the mathematically optimal solution of
F(x, y) = 5.146 occurs at point (x, y) = (0.974, 0.974) (Loughlin et al. 2001). The MGA difference
model was used to generate the 5 maximally different solutions shown in Table 3. Similar to the
two previous tests, the best solutions found are all identical to the true optimal solution for each
algorithm. Similarly, the remaining four solutions in each of the sets of alternatives all appear to be
entirely congruent with one another.

The fourth testing of the MGA procedure will be on the commonly evaluated constrained
optimization problem from Aragon et al. (2010). The mathematical formulation for this test problem
can be summarized as:

Min F(X) = x x x x x x x x x x
1

2

2

2

3
4

4

2

5
6

6
2

7
4

6 7 6
10 5 12 3 11 10 7 4 10−() + −() + + −() + + + − − −− 8

7
x (28)

Subject to:

g1(X) = 2 3 4 5 127
1
2

2
4

3 4
2

5
x x x x x+ + + + − £ 0 (29)

g2(X) = 7 3 10 282
1 2 3

2
4 5

x x x x x+ + + − − £ 0 (30)
g3(X) = 23 6 8 196

1 2
2

6
2

7
x x x x+ + − − £ 0 (31)

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

13

g4(X) = 4 3 2 5 12
1
2

2
2

1 2 3
2

6 7
x x x x x x x+ − + + − £ 0 (32)

-10 £ x
i
£ 10, i = 1, 2, 3, 4, 5, 6, 7 (33)

The optimal solution for the specific design parameters employed within this formulation is
F(X*) = 680.6300573 with decision variable values of X* = (2.330499, 1.951372, -0.4775414,
4.365726, 0.6244870, 1.038131, 1.594227) (Aragon et al., 2010). The MGA procedure was run
to create the five maximally different solutions shown in Table 4. In line with the observations in
the preceding experimentation, the best solutions determined by each metaheuristic are identical to
the true optimal solution. Likewise, the sets of alternatives are all correspondingly very similar in
structure to one another.

Taken together, the computational examples have illustrated how the new MGA data structure
modelling can be used to simultaneously create multiple different alternatives by employing the
various computationally efficient, population-based metaheuristics FA, BA, and CA. All options
generated by the data structure MGA algorithm satisfy the requisite system criteria to within the
pre-specified, 10% bound while remaining maximally different from each other within the decision
space. In addition to their alternative creation proficiencies, the population-based aspect of each of

Table 2.
Five maximally different alternatives for the spring design problem generated by each algorithm

FIREFLY ALGORITHM F(X) x
1

x
2

x
3

Optimal found in Prelim. Step 0.0127 0.0517 0.3567 11.2871

Alternative 1 0.0128 0.0500 0.3164 14.1754

Alternative 2 0.0131 0.0500 0.3129 14.777

Alternative 3 0.0138 0.0523 0.348 13.3247

Alternative 4 0.0140 0.0535 0.3857 14.162

BAT ALGORITHM F(X) x
1

x
2

x
3

Optimal found in Prelim. Step 0.0127 0.0517 0. 3567 11.2871

Alternative 1 0.0128 0.0500 0.3165 14.1598

Alternative 2 0.0130 0.0521 0.3656 11.0667

Alternative 3 0.0132 0.0500 0.3167 14.6402

Alternative 4 0.0138 0.0523 0.348 13.3247

CUCKOO ALGORITHM F(X) x
1

x
2

x
3

Optimal found in Prelim. Step 0.0127 0.0517 0.3567 11.2871

Alternative 1 0.0128 0.0514 0.3472 12.0089

Alternative 2 0.0129 0.0529 0.3862 9.9684

Alternative 3 0.0137 0.0520 0.3629 12.1615

Alternative 4 0.0140 0.0557 0.4307 9.5783

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

14

the metaheuristics simultaneously enables the MGA data structure algorithm to perform extremely
well in terms of function optimization. It has been explicitly noted in Tables 1-4 that the best solutions
determined by the MGA algorithm in each test instance, using each of the FA, BA, or CA, is always
completely identical to the true optimal solutions found in Yang and Deb (2010), Cagnina et al.
(2008), Loughlin et al. (2001), and Aragon et al. (2010), respectively.

In summary, this section has demonstrated the efficacy of employing the population-based MGA
data structure procedure in conjunction with the FA, BA, and CA by testing it on four well-known
benchmark problems. There are several key findings. First, the FA, BA, and CA are all excellent
optimization methods. They always enabled the MGA procedure to determine the optimal solution
to each of the benchmark problems in every instance. Second, in general, the evolutionary features
operating within each of the FA, BA, and CA actually create more good alternatives than planners
would be able to produce using other MGA techniques. This is due to the underlying evolving
characteristics of population-based searches. Third, due to the inherent design of the MGA algorithm,
the alternatives generated would be intrinsically suitable for planning purposes. Their decision-
variable structures are simultaneously maximally different from each other while falling within the
user-specified bound of overall optimality (not just different from the optimal solution as in HSJ).
Fourth, for each solution set for each test problem, irrespective of the actual population-based procedure
employed, the alternatives within these sets are essentially identical in terms of range and distribution
of decision-variable structures together with the similarity of their corresponding objectives. Fifth,
the population-based MGA data structure algorithm is computationally efficient because it requires
a single run of whatever population-based metaheuristic procedure is employed to generate its entire
set of alternatives (not via multiple runs as under an HSJ-styled approach). Specifically, in order to

Table 3.
Five maximally different alternatives for the 100-peak multimodal optimization problem generated by each algorithm

FIREFLY ALGORITHM F(x,y) x y

Optimal found in Prelim. Step 5.14 0.97 0.97

Alternative 1 5.01 0.87 0.87

Alternative 2 5.00 0.76 0.98

Alternative 3 4.89 0.55 0.97

Alternative 4 4.65 0.33 0.97

BAT ALGORITHM F(x,y) x y

Optimal found in Prelim. Step 5.14 0.97 0.97

Alternative 1 5.05 0.87 0.98

Alternative 2 4.99 0.98 0.87

Alternative 3 4.74 0.34 0.98

Alternative 4 4.69 0.98 0.24

CUCKOO ALGORITHM F(x,y) x y

Optimal found in Prelim. Step 5.14 0.97 0.97

Alternative 1 5.10 0.98 0.97

Alternative 2 4.89 0.66 0.87

Alternative 3 4.77 0.87 0.45

Alternative 4 4.64 0.13 0.98

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

15

generate P different solution alternatives, the population-based MGA data structure algorithm needs
to run a single time, irrespective of the value of P.

As motivated in the earlier sections, many “real world” optimization applications are plagued by
incongruent performance requirements that are extraordinarily difficult to quantify. Thus, it is never
a disadvantage to construct a set of quantifiably good alternatives that provide distinct perspectives
to any potentially unmodelled design issues introduced during the solution formulation stage. The
unique performance features incorporated within these dissimilar alternatives may be able to provide
very different system performance with respect to the unmodelled issues, possibly incorporating
some of the unmodelled issues into the actual solution process. The evaluation testing on each of the
benchmark problems clearly demonstrates all of these requisite, desirable characteristics.

CONCLUSION

Complex “real world” decision-making can prove very difficult and is frequently influenced by
numerous unquantifiable issues, unmodelled objectives and uncertain factors. These decision
environments frequently contain incompatible design specifications that are problematic – if not
impossible – to incorporate when ancillary decision support models are constructed. Invariably,
there are unmodelled elements, not apparent during model formulation, that can significantly affect
solution adequacy. With so much uncertainty, it is doubtful that any single solution could ever be
constructed that concurrently fulfills all of the incongruent system requirements. Therefore, any

Table 4.
Five maximally different alternatives for the constrained optimization problem generated by each algorithm

FIREFLY ALGORITHM F(X) x
1

x
2

x
3

x
4

x
5

x
6

x
7

Optimal from Prelim. Step 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942

Alternative 1 687.580 2.2892 1.8985 -0.4605 4.3364 -0.5962 1.0208 1.5782

Alternative 2 706.837 2.2913 1.9003 -0.3965 4.3548 -0.6388 1.0796 1.6023

Alternative 3 718.478 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230

Alternative 4 744.901 2.3468 1.9118 -0.4087 4.3557 -0.6283 0.9899 1.6024

BAT ALGORITHM F(X) x
1

x
2

x
3

x
4

x
5

x
6

x
7

Optimal from Prelim. Step 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942

Alternative 1 683.917 2.3025 1.9353 -0.4881 4.3333 -0.6169 1.0355 1.5889

Alternative 2 696.899 2.2934 1.9096 -0.4397 4.3369 -0.6616 1.0331 1.6176

Alternative 3 718.478 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230

Alternative 4 741.897 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230

CUCKOO ALGORITHM F(X) x
1

x
2

x
3

x
4

x
5

x
6

x
7

Optimal from Prelim. Step 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942

Alternative 1 687.022 2.3056 1.9076 -0.4245 4.3256 -0.6184 1.0388 1.6067

Alternative 2 705.926 2.3080 1.9171 -0.4724 4.3343 -0.6578 1.053 1.6078

Alternative 3 711.793 2.3174 1.9111 -0.4084 4.3668 -0.6166 1.0759 1.6116

Alternative 4 730.091 2.2892 1.8985 -0.4605 4.3364 -0.5962 1.0208 1.5782

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

16

decision support approach must somehow address these complicating features in some way, while
simultaneously being flexible enough to condense the potential effects within the intrinsic planning
incongruities. Hence the need for MGA approaches.

In this study, an MGA data structure procedure was tested to demonstrate how three widely-
employed, population-based metaheuristics could be employed to simultaneously produce numerous
maximally different alternatives. This population-based MGA data structure approach is designed to
always generate a set of dissimilar solution options, such that each generated alternative contributes
an entirely different perspective to the problem. The set of maximally different alternatives produced
by the computationally efficient MGA data structure algorithm supplies contrasting solutions that can
introduce very different perspectives to the problem-solving process while still performing robustly
with respect to the requisite performance measures. Consequently, these alternatives could potentially
capture possibilities completely overlooked under more traditional modelling approaches that can
now be incorporated into the decision-making.

The computational effectiveness from employing the MGA algorithm in conjunction with the FA,
BA, and CA metaheuristics was demonstrated on four well-known, widely-tested, highly-nonlinear
benchmark problems. The MGA computational procedure under each metaheuristic created not only
a very similar set of near-best, maximally different alternatives for each tested problem, but also
determined the optimal solution in every instance. Hence, the testing on the FA, BA, and CA methods
clearly demonstrated that each of these population-based procedures is highly effective for MGA
purposes and that the algorithms are, effectively, mutually interchangeable from a computational
performance perspective. Furthermore, since population-based metaheuristics can be adapted to a wide
spectrum of problem types, the adaptability of this population-based MGA approach can be extended
into numerous different problem domains. Extensions to the procedure using other population-based
metaheuristic algorithms will be examined in forthcoming studies.

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

17

ReFeReNCeS

Acharjee, S., & Chaudhuri, S. S. (2022). Test zone search optimization using cuckoo search algorithm for
VVC. International Journal of Multimedia Data Engineering and Management, 13(1), 1–16. doi:10.4018/
IJMDEM.314574

Acharjya, D., & Anitha, A. (2017). A comparative study of statistical and rough computing models in predictive
data analysis. International Journal of Ambient Computing and Intelligence, 8(2), 32–51. doi:10.4018/
IJACI.2017040103

Aggrawal, K., & Anuja, A. (2022). Detecting community structure in financial markets using the bat optimization
algorithm. International Journal of Information Technology Project Management, 13(3), 1–21. doi:10.4018/
IJITPM.313421

Aragon, V. S., Esquivel, S. C., & Coello, C. C. A. (2010). A modified version of a t-cell algorithm for constrained
optimization problems. International Journal for Numerical Methods in Engineering, 84, 351–378. doi:10.1002/nme.2904

Arrais-Castro, A., Varela, M. L. R., Putnik, G. D., Ribeiro, R., & Dargram, F. C. C. (2015). Collaborative
negotiation platform using a dynamic multi-criteria decision model. International Journal of Decision Support
System Technology, 7(1), 1–14. doi:10.4018/ijdsst.2015010101

Arun, B., & Kumar, V. (2017). Materialized view selection using bumble bee mating optimization. International
Journal of Decision Support System Technology, 9(3), 1–27. doi:10.4018/IJDSST.2017070101

Bangyal, W. H., Ahmad, J., & Rauf, H. T. (2021). Comparison of different bat initialization techniques for
global optimization problems. International Journal of Applied Metaheuristic Computing, 12(1), 157–184.
doi:10.4018/IJAMC.2021010109

Baugh, J. W. Jr, Caldwell, S. C., & Brill, E. D. Jr. (1997). A mathematical programming approach
for generating alternative in discrete structural optimization. Engineering Optimization, 28(1), 1–31.
doi:10.1080/03052159708941125

Belarbi, M. A., Mahmoudi, S., & Belalem, G. (2017). PCA as dimensionality reduction for large-scale image
retrieval systems. International Journal of Ambient Computing and Intelligence, 8(4), 45–58. doi:10.4018/
IJACI.2017100104

Benatia, I., Laouar, M. R., Bendjenna, H., & Eom, S. (2016). Implementing a cloud-based decision support
system in a private cloud: The infrastructure and the deployment process. International Journal of Decision
Support System Technology, 8(1), 25–42. doi:10.4018/IJDSST.2016010102

Bharathi, M. (2022). Hybrid particle swarm and ranked firefly metaheuristic optimization-based software
test case minimization. International Journal of Applied Metaheuristic Computing, 13(1), 1–20. doi:10.4018/
IJAMC.2022010106

Brill, E. D. Jr, Chang, S. Y., & Hopkins, L. D. (1982). Modelling to generate alternatives: The HSJ approach
and an illustration using a problem in land use planning. Management Science, 28(3), 221–235. doi:10.1287/
mnsc.28.3.221

Brugnach, M., Tagg, A., Keil, F., & De Lange, W. J. (2007). Uncertainty matters: Computer models at the
science-policy interface. Water Resources Management, 21(7), 1075–1090. doi:10.1007/s11269-006-9099-y

Cagnina, L. C., Esquivel, C. A., & Coello, C. A. (2008). Solving engineering optimization problems with the
simple constrained particle swarm optimizer. Informatica (Vilnius), 32, 319–326.

Chandrasekaran, K., & Simon, S. P. (2014). Wind-thermal integrated power system scheduling problem using
cuckoo search algorithm. International Journal of Operations Research and Information Systems, 5(3), 1–16.
doi:10.4018/ijoris.2014070104

Dekhici, L., & Belkai, K. (2015). A bat algorithm with generalized walk for the two-stage hybrid flow
shop problem. International Journal of Decision Support System Technology, 7(3), 1–16. doi:10.4018/
IJDSST.2015070101

Fahad, M., Ullah, R., & Abdullah, F. (2017). Big data analysis and implementation in different areas using
IoT. International Journal of Hyperconnectivity and the Internet of Things, 1(2), 12–25. doi:10.4018/
IJHIoT.2017070102

http://dx.doi.org/10.4018/IJMDEM.314574
http://dx.doi.org/10.4018/IJMDEM.314574
http://dx.doi.org/10.4018/IJACI.2017040103
http://dx.doi.org/10.4018/IJACI.2017040103
http://dx.doi.org/10.4018/IJITPM.313421
http://dx.doi.org/10.4018/IJITPM.313421
http://dx.doi.org/10.1002/nme.2904
http://dx.doi.org/10.4018/ijdsst.2015010101
http://dx.doi.org/10.4018/IJDSST.2017070101
http://dx.doi.org/10.4018/IJAMC.2021010109
http://dx.doi.org/10.1080/03052159708941125
http://dx.doi.org/10.4018/IJACI.2017100104
http://dx.doi.org/10.4018/IJACI.2017100104
http://dx.doi.org/10.4018/IJDSST.2016010102
http://dx.doi.org/10.4018/IJAMC.2022010106
http://dx.doi.org/10.4018/IJAMC.2022010106
http://dx.doi.org/10.1287/mnsc.28.3.221
http://dx.doi.org/10.1287/mnsc.28.3.221
http://dx.doi.org/10.1007/s11269-006-9099-y
http://dx.doi.org/10.4018/ijoris.2014070104
http://dx.doi.org/10.4018/IJDSST.2015070101
http://dx.doi.org/10.4018/IJDSST.2015070101
http://dx.doi.org/10.4018/IJHIoT.2017070102
http://dx.doi.org/10.4018/IJHIoT.2017070102

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

18

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2011). Mixed variable structural optimization using firefly
algorithm. Computers & Structures, 89(23-24), 2325–2336. doi:10.1016/j.compstruc.2011.08.002

Garg, D., & Kumar, P. (2021). Accelerated cuckoo search with extended diversification and intensification.
International Journal of Swarm Intelligence Research, 12(3), 125–148. doi:10.4018/IJSIR.2021070106

Gergin, Z., Tuncbilek, N., & Esnaf, S. (2019). Clustering approach using artificial bee colony algorithm for
healthcare waste disposal facility location problem. International Journal of Operations Research and Information
Systems, 10(1), 56–75. doi:10.4018/IJORIS.2019010104

Gopu, A., & Venkataraman, N. (2021). Virtual machine placement using multi-objective bat algorithm with
decomposition in distributed cloud: MOBA/D for VMP. International Journal of Applied Metaheuristic
Computing, 12(4), 62–77. doi:10.4018/IJAMC.2021100104

Gunalay, G., & Yeomans, J. S. (2019). Multicriteria generation of alternatives for engineering optimization
problems using population-based metaheuristics: A computational test. WSEAS Transactions on Computers,
18(31), 239–247.

Imanirad, R., Yang, X. S., & Yeomans, J. S. (2012a). A computationally efficient, biologically-inspired modelling-
to-generate-alternatives method. Journal of Computing, 2(2), 43–47.

Imanirad, R., Yang, X. S., & Yeomans, J. S. (2012b). A co-evolutionary, nature-inspired algorithm for the
concurrent generation of alternatives. Journal of Computing, 2(3), 101–106.

Imanirad, R., Yang, X. S., & Yeomans, J. S. (2013a). Modelling-to-generate-alternatives via the firefly algorithm.
Journal of Applied Operational Research, 5(1), 14–21.

Imanirad, R., Yang, X. S., & Yeomans, J. S. (2013b). A concurrent modelling to generate alternatives approach
using firefly algorithm. International Journal of Decision Support System Technology, 5(2), 33–45. doi:10.4018/
jdsst.2013040103

Imanirad, R., Yang, X. S., & Yeomans, J. S. (2013c). A biologically-inspired metaheuristic procedure for
modelling-to-generate-alternatives. International Journal of Engineering Research and Applications, 3(2),
1677–1686.

Imanirad, R., & Yeomans, J. S. (2013). Modelling to generate alternatives using biologically inspired algorithms.
In X. S. Yang (Ed.), Swarm intelligence and bio-inspired computation: Theory and applications (pp. 313–333).
Elsevier. doi:10.1016/B978-0-12-405163-8.00014-4

Jain, A., & Yada, D. (2021). Particle swarm optimization for Punjabi text summarization. International Journal
of Operations Research and Information Systems, 12(3), 1–17. doi:10.4018/IJORIS.20210701.oa1

Janssen, J. A. E. B., Krol, M. S., Schielen, R. M. J., & Hoekstra, A. Y. (2010). The effect of modelling quantified
expert knowledge and uncertainty information on model-based decision making. Environmental Science &
Policy, 13(3), 229–238. doi:10.1016/j.envsci.2010.03.003

Loughlin, D. H., Ranjithan, S. R., Brill, E. D. Jr, & Baugh, J. W. Jr. (2001). Genetic algorithm approaches
for addressing unmodeled objectives in optimization problems. Engineering Optimization, 33(5), 549–569.
doi:10.1080/03052150108940933

Matallah, H., Belalem, G., & Bouamrane, K. (2017). A thorough insight into theoretical and practical
developments in multi-agent systems. International Journal of Ambient Computing and Intelligence, 8(1),
23–49. doi:10.4018/IJACI.2017010102

Matthies, M., Giupponi, C., & Ostendorf, B. (2007). Environmental decision support systems: Current issues,
methods and tools. Environmental Modelling & Software, 22(2), 123–127. doi:10.1016/j.envsoft.2005.09.005

Mowrer, H. T. (2000). Uncertainty in natural resource decision support systems: Sources, interpretation and
importance. Computers and Electronics in Agriculture, 27(1-3), 139–154. doi:10.1016/S0168-1699(00)00113-7

Murali, K., & Doma, S. (2022). Artificial intelligence-based breast cancer detection using WPSO. International
Journal of Operations Research and Information Systems, 13(2), 1–16. doi:10.4018/IJORIS.306195

Pandey, A., & Bannerjee, S. (2021). Test data generation and selection using Levy flight-based firefly algorithm.
International Journal of Operations Research and Information Systems, 9(2), 18–34.

http://dx.doi.org/10.1016/j.compstruc.2011.08.002
http://dx.doi.org/10.4018/IJSIR.2021070106
http://dx.doi.org/10.4018/IJORIS.2019010104
http://dx.doi.org/10.4018/IJAMC.2021100104
http://dx.doi.org/10.4018/jdsst.2013040103
http://dx.doi.org/10.4018/jdsst.2013040103
http://dx.doi.org/10.1016/B978-0-12-405163-8.00014-4
http://dx.doi.org/10.4018/IJORIS.20210701.oa1
http://dx.doi.org/10.1016/j.envsci.2010.03.003
http://dx.doi.org/10.1080/03052150108940933
http://dx.doi.org/10.4018/IJACI.2017010102
http://dx.doi.org/10.1016/j.envsoft.2005.09.005
http://dx.doi.org/10.1016/S0168-1699(00)00113-7
http://dx.doi.org/10.4018/IJORIS.306195

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

19

Puri, V., Le, C. V., Kumar, R., & Jagdev, S. S. (2020). Fruitful synergy model of artificial intelligence and
Internet of thing for smart transportation system. International Journal of Hyperconnectivity and the Internet
of Things, 4(1), 43–57. doi:10.4018/IJHIoT.2020010104

Rahman, R. M., Hasan, S. S., Rahman, R., Jahan, K. A., Islam, S., & Shadman, A. I. (2019). A novel fuzzy
inspired bat algorithm for multidimensional function optimization problem. International Journal of Fuzzy
System Applications, 8(1), 83–100. doi:10.4018/IJFSA.2019010105

Rautry, R., Balabantaray, R. C., Dash, R. S., & Dash, R. (2019). CSMDSE-Cuckoo search based multi document
summary extractor: Cuckoo search based summary extractor. International Journal of Cognitive Informatics
and Natural Intelligence, 13(4), 56–70. doi:10.4018/IJCINI.2019100103

Sharma, K., & Virmani, J. (2017). A decision support system for classification of normal and medical renal
disease using ultrasound images: A decision support system for medical renal diseases. International Journal
of Ambient Computing and Intelligence, 8(2), 52–69. doi:10.4018/IJACI.2017040104

Strand, M., Syberfeldt, A., & Geertsen, A. (2017). A decision support system for sustainable waste collection.
International Journal of Decision Support System Technology, 9(4), 49–65. doi:10.4018/IJDSST.2017100104

Vasant, P., Le, L. D., Vo, D. N., Huynh, S. T., & Nguyen-Hoang, T. M. (2020). A hybrid differential evolution
and harmony search for optimal power flow with FACTS devices. International Journal of Operations Research
and Information Systems, 11(3), 39–65. doi:10.4018/IJORIS.2020070103

Walker, W. E., Harremoes, P., Rotmans, J., Van der Sluis, J. P., Van Asselt, M. B. A., Janssen, P., & Krayer von
Krauss, M. P. (2003). Defining uncertainty – a conceptual basis for uncertainty management in model-based
decision support. Integrated Assessment, 4(1), 5–17. doi:10.1076/iaij.4.1.5.16466

Wang, J., & Ji, Y. (2021). Firefly algorithm based on Euclidean metric and dimensional mutation. International
Journal of Cognitive Informatics and Natural Intelligence, 15(4), 1–19. doi:10.4018/IJCINI.286769

Yang, X. S. (2009). Firefly algorithms for multimodal optimization. Lecture Notes in Computer Science, 5792,
169–178. doi:10.1007/978-3-642-04944-6_14

Yang, X. S. (2010). Nature-inspired metaheuristic algorithms (2nd ed.). Luniver Press.

Yang, X. S., & Deb, S. (2010). Engineering optimization by cuckoo search. International Journal of Mathematical
Modelling and Numerical Optimisation, 1(4), 330–343. doi:10.1504/IJMMNO.2010.035430

Yang, X. S., & Yeomans, J. S. (2014). Municipal waste management optimization using a firefly algorithm-
driven simulation-optimization approach. International Journal of Process Management and Benchmarking,
4(4), 363–375. doi:10.1504/IJPMB.2014.065518

Yeomans, J. S. (2017a). Simultaneous computing of sets of maximally different alternatives to optimal solutions.
International Journal of Engineering Research and Applications, 7(9), 21–28.

Yeomans, J. S. (2017b). An optimization algorithm that simultaneously calculates maximally different alternatives.
International Journal of Computational Engineering Research, 7(10), 45–50.

Yeomans, J. S. (2018a). A nature-inspired metaheuristic for generating alternatives. In M. Khosrow-Pour (Ed.),
Encyclopedia of information science and technology (4th ed., pp. 2178–2187). IGI Global.

Yeomans, J. S. (2018b). An efficient computational procedure for simultaneously generating alternatives to
an optimal solution using the firefly algorithm. In X. S. Yang (Ed.), Nature-inspired algorithms and applied
optimization (pp. 261–273). Springer. doi:10.1007/978-3-319-67669-2_12

Yeomans, J. S. (2018c). A biologically-inspired metaheuristic approach for the simultaneous generation of
alternatives. International Journal of Computers in Clinical Practice, 3(2), 1–12. doi:10.4018/IJCCP.2018070101

Yeomans, J. S. (2018d). An algorithm for generating sets of maximally different alternatives using population-
based metaheuristic procedures. Transactions on Machine Learning and Artificial Intelligence, 6(5), 1–9.
doi:10.14738/tmlai.65.5184

Yeomans, J. S. (2019a). A bicriterion approach for generating alternatives using population-based algorithms.
WSEAS Transactions on Systems, 18(4), 29–34.

http://dx.doi.org/10.4018/IJHIoT.2020010104
http://dx.doi.org/10.4018/IJFSA.2019010105
http://dx.doi.org/10.4018/IJCINI.2019100103
http://dx.doi.org/10.4018/IJACI.2017040104
http://dx.doi.org/10.4018/IJDSST.2017100104
http://dx.doi.org/10.4018/IJORIS.2020070103
http://dx.doi.org/10.1076/iaij.4.1.5.16466
http://dx.doi.org/10.4018/IJCINI.286769
http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1504/IJMMNO.2010.035430
http://dx.doi.org/10.1504/IJPMB.2014.065518
http://dx.doi.org/10.1007/978-3-319-67669-2_12
http://dx.doi.org/10.4018/IJCCP.2018070101
http://dx.doi.org/10.14738/tmlai.65.5184

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1

20

Julian Scott Yeomans has been a Professor of Operations Management and Information Systems at the Schulich
School of Business, York University since 1993. He is the Director for both the Master of Business Analytics (MBAN)
program and the Master of Artificial Intelligence (MMAI) program at Schulich. He holds degrees in management
science/information systems, environmental engineering, and statistics. He generally teaches courses on VBA
programming and spreadsheet-based decision support systems. He has published 6 books and over 125 peer-
reviewed, academic journal articles on a wide range of topics. His current research focuses upon simulation-
decomposition, simulation-optimization, machine learning, visual analytics, population-based metaheuristics, and
modelling-to-generate-alternatives. Recent application areas have included environmental informatics, solid/hazardous
waste management, empirical finance, and the optimal osmotic dehydration of fruits, vegetables, and fungi.

Yeomans, J. S. (2019b). A simulation-optimization algorithm for generating sets of alternatives using population-
based metaheuristic procedures. Journal of Software Engineering and Simulation, 5(2), 1–6. doi:10.35629/9795-
05020101

Yeomans, J. S. (2019c). Water resource management using stochastic multicriteria population-based algorithms
for producing alternatives. Journal of Earth and Environmental Sciences, 3(2), 1–10.

Yeomans, J. S. (2019d). A stochastic bicriteria procedure for creating system options. Algorithms Research,
5(1), 11–18.

Yeomans, J. S. (2019e). A population-based multicriteria algorithm for alternative generation. Transactions on
Machine Learning and Artificial Intelligence, 7(4), 1–8.

Yeomans, J. S. (2019f). A stochastic, dual-criterion, simulation-optimization algorithm for generating alternatives.
Journal of Computing Science and Engineering : JCSE, 5(6), 1–10.

Yeomans, J. S. (2019g). Waste management using multicriteria population-based simulation-optimization
algorithms. Journal of Waste Management and Disposal, 2(1), 1–8.

Yeomans, J. S. (2020a). A stochastic, multicriteria, firefly algorithm-based approach for waste management
decision-making. International Journal of Mathematics, Game Theory, and Algebra, 29(4), 251–275.

Yeomans, J. S. (2020b). Alternative generation in complex decision modelling using a firefly algorithm
metaheuristic approach. International Journal of Hyperconnectivity and the Internet of Things, 4(2), 68–79.
doi:10.4018/IJHIoT.2020070105

Yeomans, J. S. (2021). A multicriteria, bat algorithm approach for computing the range limited routing problem
for electric trucks. WSEAS Transactions on Circuits and Systems, 20(13), 96–106. doi:10.37394/23201.2021.20.13

Yeomans, J. S., & Gunalay, Y. (2011). Simulation-optimization techniques for modelling to generate alternatives
in waste management planning. Journal of Applied Operational Research, 3(1), 23–35.

Zechman, E. M., & Ranjithan, S. R. (2004). An evolutionary algorithm to generate alternatives (EAGA) for
engineering optimization problems. Engineering Optimization, 36(5), 539–553. doi:10.1080/0305215041000
1704863

http://dx.doi.org/10.35629/9795-05020101
http://dx.doi.org/10.35629/9795-05020101
http://dx.doi.org/10.4018/IJHIoT.2020070105
http://dx.doi.org/10.37394/23201.2021.20.13
http://dx.doi.org/10.1080/03052150410001704863
http://dx.doi.org/10.1080/03052150410001704863

